RGB-D SLAM in Dynamic Environments Using Static Point Weighting

被引:197
|
作者
Li, Shile [1 ]
Lee, Dongheui [1 ]
机构
[1] Tech Univ Munich, Dept Elect Engn & Comp Engn, D-80333 Munich, Germany
来源
关键词
Computer vision for other robotic applications; SLAM (Simultaneous Localization and Mapping); visual tracking;
D O I
10.1109/LRA.2017.2724759
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose a real-time depth edge based RGB-D SLAM system for dynamic environment. Our visual odometry method is based on frame-to-keyframe registration, where only depth edge points are used. To reduce the influence of dynamic objects, we propose a static weighting method for edge points in the keyframe. Static weight indicates the likelihood of one point being part of the static environment. This static weight is added into the intensity assisted iterative closest point (IAICP) method to perform the registration task. Furthermore, our method is integrated into a SLAM (Simultaneous Localization and Mapping) system, where an efficient loop closure detection strategy is used. Both our visual odometry method and SLAM system are evaluated with challenging dynamic sequences from the TUM RGB-D dataset. Compared to state-of-the-art methods for dynamic environment, our method reduces the tracking error significantly.
引用
收藏
页码:2263 / 2270
页数:8
相关论文
共 50 条
  • [1] RGB-D SLAM in Dynamic Environments Using Point Correlations
    Dai, Weichen
    Zhang, Yu
    Li, Ping
    Fang, Zheng
    Scherer, Sebastian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) : 373 - 389
  • [2] Ground Enhanced RGB-D SLAM for Dynamic Environments
    Guo, Ruibin
    Liu, Xinghua
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 1171 - 1177
  • [3] Robust and Efficient RGB-D SLAM in Dynamic Environments
    Yang, Xin
    Yuan, Zikang
    Zhu, Dongfu
    Chi, Cheng
    Li, Kun
    Liao, Chunyuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4208 - 4219
  • [4] RGB-D SLAM Using Point-Plane Constraints for Indoor Environments
    Guo, Ruibin
    Peng, Keju
    Fan, Weihong
    Zhai, Yongping
    Liu, Yunhui
    SENSORS, 2019, 19 (12)
  • [5] RGB-D SLAM in Dynamic Environments with Multilevel Semantic Mapping
    Qin, Yusheng
    Mei, Tiancan
    Gao, Zhi
    Lin, Zhipeng
    Song, Weiwei
    Zhao, Xuhui
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 105 (04)
  • [6] RGB-D SLAM in Dynamic Environments with Multilevel Semantic Mapping
    Yusheng Qin
    Tiancan Mei
    Zhi Gao
    Zhipeng Lin
    Weiwei Song
    Xuhui Zhao
    Journal of Intelligent & Robotic Systems, 2022, 105
  • [7] Improving RGB-D SLAM in dynamic environments using semantic aided segmentation
    Kenye, Lhilo
    Kala, Rahul
    ROBOTICA, 2022, 40 (06) : 2065 - 2090
  • [8] Motion removal for reliable RGB-D SLAM in dynamic environments
    Sun, Yuxiang
    Liu, Ming
    Meng, Max Q. -H.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 108 : 115 - 128
  • [9] PoseFusion: Dense RGB-D SLAM in Dynamic Human Environments
    Zhang, Tianwei
    Nakamura, Yoshihiko
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 : 772 - 780
  • [10] Robust RGB-D SLAM in Dynamic Environments for Autonomous Vehicles
    Ji, Tete
    Yuan, Shenghai
    Xie, Lihua
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 665 - 671