Global Partial Likelihood for Nonparametric Proportional Hazards Models

被引:23
|
作者
Chen, Kani [1 ]
Guo, Shaojun [2 ]
Sun, Liuquan [2 ]
Wang, Jane-Ling [3 ]
机构
[1] HKUST, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[3] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Cox model; Local linear smoothing; Local partial likelihood; Semiparametric efficiency; LOCAL PARTIAL LIKELIHOOD; REGRESSION-MODELS; COX MODEL; EFFICIENT ESTIMATION; SURVIVAL-DATA; SPLINES;
D O I
10.1198/jasa.2010.tm08636
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
As an alternative to the local partial likelihood method of Tibshirani and Hastie and Fan, Gijbels, and King. a global partial likelihood method is proposed to estimate the covariate effect in a nonparametric proportional hazards model, lambda(t vertical bar x) = exp{psi(x)}lambda(0)(t). The estimator, (psi) over cap (x), reduces to the Cox partial likelihood estimator if the covariate is discrete. The estimator is shown to be consistent and semiparametrically efficient for linear functionals of psi(x). Moreover, Breslow-type estimation of the cumulative baseline hazard function, using the proposed estimator (psi) over cap (x), is proved to be efficient. The asymptotic bias and variance are derived under regularity conditions. Computation of the estimator involves an iterative but simple algorithm. Extensive simulation studies provide evidence supporting the theory. The method is illustrated with the Stanford heart transplant data set. The proposed global approach is also extended to a partially linear proportional hazards model and found to provide efficient estimation of the slope parameter. This article has the supplementary materials online.
引用
收藏
页码:750 / 760
页数:11
相关论文
共 50 条
  • [1] Partial likelihood estimation of isotonic proportional hazards models
    Chung, Yunro
    Ivanova, Anastasia
    Hudgens, Michael G.
    Fine, Jason P.
    [J]. BIOMETRIKA, 2018, 105 (01) : 133 - 148
  • [2] A global partial likelihood estimation in the additive Cox proportional hazards model
    Lin, Huazhen
    He, Ye
    Huang, Jian
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 169 : 71 - 87
  • [3] Penalized partial likelihood inference of proportional hazards latent trait models
    Kang, Hyeon-Ah
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2017, 70 (02): : 187 - 208
  • [4] Local partial likelihood estimation in proportional hazards regression
    Chen, Songnian
    Zhou, Lingzhi
    [J]. ANNALS OF STATISTICS, 2007, 35 (02): : 888 - 916
  • [5] Pseudo-partial likelihood for proportional hazards models with biased-sampling data
    Tsai, Wei Yann
    [J]. BIOMETRIKA, 2009, 96 (03) : 601 - 615
  • [6] Generalized Proportional Hazards Model Based on Modified Partial Likelihood
    Vilijandas B. Bagdonavicius
    Mikhail S. Nikulin
    [J]. Lifetime Data Analysis, 1999, 5 : 329 - 350
  • [7] Generalized proportional hazards model based on modified partial likelihood
    Bagdonavicius, VB
    Nikulin, MS
    [J]. LIFETIME DATA ANALYSIS, 1999, 5 (04) : 329 - 350
  • [8] NONPARAMETRIC ALTERNATIVES TO PROPORTIONAL HAZARDS
    BAILEY, K
    [J]. BIOMETRICS, 1984, 40 (04) : 1183 - 1183
  • [9] Flexible maximum likelihood methods for bivariate proportional hazards models
    He, WQ
    Lawless, JF
    [J]. BIOMETRICS, 2003, 59 (04) : 837 - 848
  • [10] NONPARAMETRIC ASSESSMENT OF RELATIVE GOODNESS-OF-FIT IN PROPORTIONAL HAZARDS MODELS
    HSIEH, CC
    SEDDON, JM
    [J]. CONTROLLED CLINICAL TRIALS, 1985, 6 (03): : 240 - 240