Statistical inference for non-stationary GARCH(p, q) models

被引:9
|
作者
Chan, Ngai Hang [1 ]
Ng, Chi Tim [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
来源
关键词
Asymptotic normality; consistency; non-stationary GARGH model; Oseledec's multiplicative ergodic theorem; product of random matrices; quasi-maximum likelihood estimator;
D O I
10.1214/09-EJS452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the quasi-maximum likelihood estimator (QMLE) of non-stationary GARCH(p, q) models. By expressing GARCH models in matrix form, the log-likelihood function is written in terms of the product of random matrices. Oseledec's multiplicative ergodic theorem is then used to establish the asymptotic properties of the log-likelihood function and thereby, showing the weak consistency and the asymptotic normality of the QMLE for non-stationary GARCH(p, q) models.
引用
收藏
页码:956 / 992
页数:37
相关论文
共 50 条
  • [1] Posterior inference for sparse hierarchical non-stationary models
    Monterrubio-Gomez, Karla
    Roininen, Lassi
    Wade, Sara
    Damoulas, Theo
    Girolami, Mark
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 148
  • [2] A time varying GARCH(p, q) model and related statistical inference
    Rohan, Neelabh
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) : 1983 - 1990
  • [3] Statistical inference for nonparametric GARCH models
    Meister, Alexander
    Kreiss, Jens-Peter
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (10) : 3009 - 3040
  • [4] ESTIMATION AND INFERENCE FOR NON-STATIONARY ARRIVAL MODELS WITH A LINEAR TREND
    Glynn, Peter W.
    Zheng, Zeyu
    [J]. 2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3764 - 3773
  • [5] Statistical inference for DNA sequences of promoters: a non-stationary qualitative model
    Li, Xiaoyin
    Doukhan, Paul
    Feugeas, Jean-Paul
    [J]. STATISTICS, 2017, 51 (01) : 154 - 166
  • [6] STREAMING INFERENCE FOR INFINITE NON-STATIONARY CLUSTERING
    Schaeffer, Rylan
    Liu, Gabrielle Kaili-May
    Du, Yilun
    Linderman, Scott
    Fiete, Ila Rani
    [J]. CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 199, 2022, 199
  • [7] Statistical inference for mixture GARCH models with financial application
    Cavicchioli, Maddalena
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2615 - 2642
  • [8] Statistical inference for mixture GARCH models with financial application
    Maddalena Cavicchioli
    [J]. Computational Statistics, 2021, 36 : 2615 - 2642
  • [9] STATISTICAL INFERENCE FOR MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS
    Chan, Ngai-Hang
    Chen, Jian
    Chen, Xiaohong
    Fan, Yanqin
    Peng, Liang
    [J]. STATISTICA SINICA, 2009, 19 (01) : 53 - 70
  • [10] Asymmetric and non-stationary GARCH(1, 1) models: parametric bootstrap to evaluate forecasting performance
    Choi, Sun Woo
    Yoon, Jae Eun
    Lee, Sung Duck
    Hwang, Sun Young
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (04) : 611 - 622