Prediction Models for Gastric Cancer Risk in the General Population: A Systematic Review

被引:8
|
作者
Gu, Jianhua [1 ]
Chen, Ru [1 ]
Wang, Shao-Ming [1 ]
Li, Minjuan [1 ]
Fan, Zhiyuan [1 ]
Li, Xinqing [1 ]
Zhou, Jiachen [2 ]
Sun, Kexin [1 ]
Wei, Wenqiang [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Clin Res Ctr Canc, Off Natl Cent Canc Registry,Natl Canc Ctr, 17 Panjiayuan, Beijing 100021, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Hlth Sci Ctr, Xian, Shaanxi, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
SERUM PEPSINOGEN; TOOL; EXPLANATION; VALIDATION; ANTIBODY;
D O I
10.1158/1940-6207.CAPR-21-0426
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Risk prediction models for gastric cancer could identify high-risk individuals in the general population. The objective of this study was to systematically review the available evidence about the construction and verification of gastric cancer predictive models. We searched PubMed, Embase, and Cochrane Library databases for articles that developed or validated gastric cancer risk prediction models up to November 2021. Data extracted included study characteristics, predictor selection, missing data, and evaluation metrics. Risk of bias (ROB) was assessed using the Prediction model Risk Of Bias Assessment Tool (PROBAST). We identified a total of 12 original risk prediction models that fulfilled the criteria for analysis. The area under the receiver operating characteristic curve (AUC) ranged from 0.73 to 0.93 in derivation sets (n = 6), 0.68 to 0.90 in internal validation sets (n = 5), 0.71 to 0.92 in external validation sets (n = 7). The higher-performing models usually include age, salt preference, Helicobacter pylori, smoking, body mass index, family history, pepsinogen, and sex. According to PROBAST, at least one domain with a high ROB was present in all studies mainly due to methodologic limitations in the analysis domain. In conclusion, although some risk prediction models including similar predictors have displayed sufficient discriminative abilities, many have a high ROB due to methodologic limitations and are not externally validated efficiently. Future prediction models should adherence to well-established standards and guidelines to benefit gastric cancer screening. Prevention Relevance: Through systematical reviewing available evidence about the construction and verification of gastric cancer predictive models, we found that most models have a high ROB due to methodologic limitations and are not externally validated efficiently. Future prediction models are supposed to adherence to well-established standards and guidelines to benefit gastric cancer screening.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 50 条
  • [1] Prediction models for cardiovascular disease risk in the general population: systematic review
    Damen, Johanna A. A. G.
    Hooft, Lotty
    Schuit, Ewoud
    Debray, Thomas P. A.
    Collins, Gary S.
    Tzoulaki, Ioanna
    Lassale, Camille M.
    Siontis, George C. M.
    Chiocchia, Virginia
    Roberts, Corran
    Schlussel, Michael Maia
    Gerry, Stephen
    Black, James A.
    Heus, Pauline
    van der Schouw, Yvonne T.
    Peelen, Linda M.
    Moons, Karel G. M.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2016, 353
  • [2] Cardiovascular risk prediction models for women in the general population: A systematic review
    Baart, Sara J.
    Dam, Veerle
    Scheres, Luuk J. J.
    Damen, Johanna A. A. G.
    Spijker, Rene
    Schuit, Ewoud
    Debray, Thomas P. A.
    Fauser, Bart C. J. M.
    Boersma, Eric
    Moons, Karel G. M.
    van der Schouw, Yvonne T.
    Appelman, Yolande
    Baart, Sara
    Benschop, Laura
    Boersma, Eric
    Brouwers, Laura
    Budde, Ricardo P. J.
    Cannegieter, Suzanne C.
    Dam, Veerle
    Eijkemans, Rene M. J. C.
    Fauser, Bart C. J. M.
    Ferrari, Michel D.
    Franx, Arie
    de Groot, Christianne J. M.
    Gunning, Marlise N.
    Hoek, Annemiek
    Koffijberg, Hendrik
    Koster, Maria P. H.
    Kruit, Mark C.
    Lagerweij, Ghizelda R.
    Lambalk, Cornelis B.
    Laven, Joop S. E.
    Linstra, Katie M.
    van der Lugt, Aad
    Maas, Angela H. E. M.
    van den Brink, Antoinette Maassen
    Meun, Cindy
    Middeldorp, Saskia
    Moons, Karel G. M.
    van Rijn, Bas B.
    van Lennep, Jeanine E. Roeters
    Roos-Hesselink, Jolien W.
    Scheres, Luuk J. J.
    van der Schouw, Yvonne T.
    Steegers, Eric A. P.
    Steegers-Theunissen, Regine P. M.
    Terwindt, Gisela M.
    Velthuis, Birgitta K.
    Wermer, Marieke J. H.
    Zoet, Gerbrand A.
    [J]. PLOS ONE, 2019, 14 (01):
  • [3] Prediction Models to Estimate the Future Risk of Osteoarthritis in the General Population: A Systematic Review
    Appleyard, Tom
    Thomas, Martin J. J.
    Antcliff, Deborah
    Peat, George
    [J]. ARTHRITIS CARE & RESEARCH, 2023, 75 (07) : 1481 - 1493
  • [4] Prediction models for endometrial cancer for the general population or symptomatic women: A systematic review
    Alblas, Maaike
    Velt, Kimberley B.
    Pashayan, Nora
    Widschwendter, Martin
    Steyerberg, Ewout W.
    Vergouwe, Yvonne
    [J]. CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2018, 126 : 92 - 99
  • [5] Risk Prediction Model for Esophageal Cancer Among General Population: A Systematic Review
    Chen, Ru
    Zheng, Rongshou
    Zhou, Jiachen
    Li, Minjuan
    Shao, Dantong
    Li, Xinqing
    Wang, Shengfeng
    Wei, Wenqiang
    [J]. FRONTIERS IN PUBLIC HEALTH, 2021, 9
  • [6] PREDICTION MODELS TO ESTIMATE FUTURE INDIVIDUAL RISK OF OSTEOARTHRITIS IN THE GENERAL POPULATION: A SYSTEMATIC REVIEW
    Appleyard, T.
    Antcliff, D.
    Thomas, M.
    Peat, G.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2022, 30 : S22 - S22
  • [7] Mortality prediction models in the general trauma population: A systematic review
    de Munter, Leonie
    Polinder, Suzanne
    Lansink, Koen W. W.
    Cnossen, Maryse C.
    Steyerberg, Ewout W.
    de Jongh, Mariska A. C.
    [J]. INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2017, 48 (02): : 221 - 229
  • [8] Risk Prediction Models for Gastric Cancer: A Scoping Review
    Xu, Linyu
    Lyu, Jianxia
    Zheng, Xutong
    Wang, Aiping
    [J]. JOURNAL OF MULTIDISCIPLINARY HEALTHCARE, 2024, 17 : 4337 - 4352
  • [9] Clinical Prediction Models for Pancreatic Cancer in General and At-Risk Populations: A Systematic Review
    Santos, Ralph
    Coleman, Helen G.
    Cairnduff, Victoria
    Kunzmann, Andrew T.
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2023, 118 (01): : 26 - 40
  • [10] Prediction Models for Type 2 Diabetes Risk in the General Population: A Systematic Review of Observational Studies
    Asgari, Samaneh
    Khalili, Davood
    Hosseinpanah, Farhad
    Hadaegh, Farzad
    [J]. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY AND METABOLISM, 2021, 19 (03)