Spatially Varying Autoregressive Processes

被引:6
|
作者
Nobre, Aline A. [1 ]
Sanso, Bruno [2 ]
Schmidt, Alexandra M. [3 ]
机构
[1] Fundacao Oswaldo Cruz, Comp Sci Program, BR-21045900 Rio De Janeiro, Brazil
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
基金
美国国家科学基金会;
关键词
Nonhomogeneous processes; Process convolutions; Spatio-temporal model; SPACE; MODEL;
D O I
10.1198/TECH.2011.10008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a class of models for processes indexed in time and space that are based on autoregressive (AR) processes at each location. We use a Bayesian hierarchical structure to impose spatial coherence for the coefficients of the AR processes. The priors on such coefficients consist of spatial processes that guarantee time stationarity at each point in the spatial domain. The AR structures are coupled with a dynamic model for the mean of the process, which is expressed as a linear combination of time-varying parameters. We use satellite data on sea surface temperature for the North Pacific to illustrate how the model can be used to separate trends, cycles, and short-term variability for high-frequency environmental data. This article has supplementary material online.
引用
收藏
页码:310 / 321
页数:12
相关论文
共 50 条
  • [1] On recursive estimation for time varying autoregressive processes
    Moulines, E
    Priouret, P
    Roueff, F
    ANNALS OF STATISTICS, 2005, 33 (06): : 2610 - 2654
  • [2] ANALYSIS AND CLASSIFICATION OF PLANAR SHAPES USING SPATIALLY VARYING AUTOREGRESSIVE MODELS
    PAULIK, MJ
    DAS, M
    LOH, N
    1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 1989, : 17 - 20
  • [3] Nonparametric estimation of time varying autoregressive nonlinear processes
    Hilgert, N
    Senoussi, R
    Vila, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (09): : 1085 - 1090
  • [4] Spatially Varying Registration Using Gaussian Processes
    Gerig, Thomas
    Shahim, Kamal
    Reyes, Mauricio
    Vetter, Thomas
    Luethi, Marcel
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II, 2014, 8674 : 413 - 420
  • [5] Spatial modeling with spatially varying coefficient processes
    Gelfand, AE
    Kim, HJ
    Sirmans, CF
    Banerjee, S
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 387 - 396
  • [6] A Time-Varying Autoregressive Model for Characterizing Nonstationary Processes
    de Souza, Douglas Baptista
    Kuhn, Eduardo Vinicius
    Seara, Rui
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (01) : 134 - 138
  • [7] Robust Shift Detection in Time-Varying Autoregressive Processes
    Fried, Roland
    AUSTRIAN JOURNAL OF STATISTICS, 2008, 37 (01) : 41 - 49
  • [8] Nonlinear wavelet estimation of time-varying autoregressive processes
    Dahlhaus, R
    Neumann, MH
    Von Sachs, R
    BERNOULLI, 1999, 5 (05) : 873 - 906
  • [9] Comparing time-varying autoregressive structures of locally stationary processes
    Salcedo, Gladys E.
    Sato, Joao R.
    Morettin, Pedro A.
    Toloi, Clelia M.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (01) : 1 - 23
  • [10] First-order seasonal autoregressive processes with periodically varying parameters
    Basawa, IV
    Lund, R
    Shao, Q
    STATISTICS & PROBABILITY LETTERS, 2004, 67 (04) : 299 - 306