ON THE SELF-DUAL EINSTEIN-MAXWELL-HIGGS EQUATION ON COMPACT SURFACES

被引:5
|
作者
Han, Jongmin [1 ]
Sohn, Juhee [1 ]
机构
[1] Kyung Hee Univ, Dept Math, Seoul 130701, South Korea
基金
新加坡国家研究基金会;
关键词
Self-dual Einstein-Maxwell-Higgs equation; Leray-Schauder degree; existence of multiple solutions; CONDENSATE SOLUTIONS; COUPLED EINSTEIN; MODEL; ASYMPTOTICS; EXISTENCE; SYSTEM;
D O I
10.3934/dcds.2019034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the self-dual Einstein-Maxwell-Higgs equation on compact surfaces. The solution structure depends on the parameter epsilon appearing in the equation. We find an upper bound epsilon(c) of epsilon for the existence of solutions. By using the topological degree theory, we prove that there exist at least two solutions for 0 < epsilon < epsilon(c). We also study the asymptotic behavior of solutions as epsilon -> 0.
引用
收藏
页码:819 / 839
页数:21
相关论文
共 50 条