Self-similarity in the classification of finite-size scaling functions for toroidal boundary conditions

被引:0
|
作者
Liaw, Tsong-Ming [1 ,2 ]
Huang, Ming-Chang [3 ,4 ]
Luo, Yu-Pin [5 ]
Lin, Simon C. [1 ,2 ]
Chou, Yen-Liang [6 ]
Deng, Youjin [7 ]
机构
[1] Acad Sinica, Grid Comp Ctr, Taipei 11529, Taiwan
[2] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[3] Chung Yuan Christian Univ, Ctr Nonlinear & Complex Syst, Chungli 32023, Taiwan
[4] Chung Yuan Christian Univ, Dept Phys, Chungli 32023, Taiwan
[5] Natl Ctr Theoret Sci, Div Phys, Hsinchu 30013, Taiwan
[6] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[7] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 01期
关键词
D O I
10.1103/PhysRevE.77.010101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The conventional periodic boundary conditions in two dimensions are extended to general boundary conditions, prescribed by primitive vector pairs that may not coincide with the coordinate axes. This extension is shown to be unambiguously specified by the twisting scheme. Equivalent relations between different twist settings are constructed explicitly. The classification of finite-size scaling functions is discussed based on the equivalent relations. A self-similar pattern for distinct classes of finite-size scaling functions is shown to appear on the plane that parametrizes the toroidal geometry.
引用
收藏
页数:4
相关论文
共 50 条