Diagnosis of retinal disorders from Optical Coherence Tomography images using CNN

被引:12
|
作者
Rajagopalan, Nithya [1 ]
Venkateswaran, N. [2 ]
Josephraj, Alex Noel [3 ]
Srithaladevi, E. [1 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, Dept Biomed Engn, Chennai, Tamil Nadu, India
[2] Sri Sivasubramaniya Nadar Coll Engn, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
[3] Shantou Univ, Coll Engn, Dept Elect Engn, Shantou, Peoples R China
来源
PLOS ONE | 2021年 / 16卷 / 07期
关键词
DIABETIC-RETINOPATHY; AUTOMATED DETECTION; LAYER SEGMENTATION; CLASSIFICATION; GLAUCOMA;
D O I
10.1371/journal.pone.0254180
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An efficient automatic decision support system for detection of retinal disorders is important and is the need of the hour. Optical Coherence Tomography (OCT) is the current imaging modality for the early detection of retinal disorders non-invasively. In this work, a Convolution Neural Network (CNN) model is proposed to classify three types of retinal disorders namely: Choroidal neovascularization (CNV), Drusen macular degeneration (DMD) and Diabetic macular edema (DME). The hyperparameters of the model like batch size, number of epochs, dropout rate, and the type of optimizer are tuned using random search optimization method for better performance to classify different retinal disorders. The proposed architecture provides an accuracy of 97.01%, sensitivity of 93.43%, and 98.07% specificity and it outperformed other existing models, when compared. The proposed model can be used for the large-scale screening of retinal disorders effectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Retraction Note to: Deep CNN framework for retinal disease diagnosis using optical coherence tomography images
    Nithya Rajagopalan
    Venkateswaran Narasimhan
    Swetha Kunnavakkam Vinjimoor
    Janani Aiyer
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (Suppl 1) : 543 - 543
  • [2] RETRACTED ARTICLE: Deep CNN framework for retinal disease diagnosis using optical coherence tomography images
    Nithya Rajagopalan
    Venkateswaran Narasimhan
    Swetha Kunnavakkam Vinjimoor
    Janani Aiyer
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 7569 - 7580
  • [3] RETRACTED: Deep CNN framework for retinal disease diagnosis using optical coherence tomography images (Retracted Article)
    Rajagopalan, Nithya
    Narasimhan, Venkateswaran
    Vinjimoor, Swetha Kunnavakkam
    Aiyer, Janani
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (07) : 7569 - 7580
  • [4] Automated diagnosis of retinal edema from optical coherence tomography images
    Arif, Abdul Wahab
    Nasim, Ammara
    Syed, Adeel M.
    Hassan, Taimur
    [J]. PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 554 - 557
  • [5] OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images
    Sunija, A. P.
    Kar, Saikat
    Gayathri, S.
    Gopi, Varun P.
    Palanisamy, P.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200
  • [6] Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images
    Sohaib Asif
    Kamran Amjad
    [J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 906 - 916
  • [7] Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images
    Asif, Sohaib
    Amjad, Kamran
    Qurrat-ul-Ain
    [J]. INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 906 - 916
  • [8] Diagnosis of retinal diseases using the vision transformer model based on optical coherence tomography images
    Zhou, Zenan
    Niu, Chen
    Yu, Huanhuan
    Zhao, Jiaqing
    Wang, Yuchen
    Dai, Cuixia
    [J]. SPIE-CLP CONFERENCE ON ADVANCED PHOTONICS 2022, 2023, 12601
  • [9] Self Distillation for Improving the Generalizability of Retinal Disease Diagnosis Using Optical Coherence Tomography Images
    Paluru, Naveen
    Ravishankar, Hariharan
    Hegde, Sharat
    Yalavarthy, Phaneendra K.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (04)
  • [10] DeSpecNet: a CNN-based method for speckle reduction in retinal optical coherence tomography images
    Shi, Fei
    Cai, Ning
    Gu, Yunbo
    Hu, Dianlin
    Ma, Yuhui
    Chen, Yang
    Chen, Xinjian
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (17):