On the Brauer group of diagonal quartic surfaces

被引:24
|
作者
Ieronymou, Evis [1 ]
Skorobogatov, Alexei N. [2 ,3 ]
Zarhin, Yuri G. [4 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, EPFL SFB IMB CSAG, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[4] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[5] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142292, Moscow Region, Russia
关键词
D O I
10.1112/jlms/jdq083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an easy sufficient condition for the Brauer group of a diagonal quartic surface D over Q to be algebraic. We also give an upper bound for the order of the quotient of the Brauer group of D by the image of the Brauer group of Q. The proof is based on the isomorphism of the Fermat quartic surface with a Kummer surface due to Mizukami.
引用
收藏
页码:659 / 672
页数:14
相关论文
共 50 条