Comparison of different preprocessing and feature extraction methods for offline recognition of handwritten arabic words

被引:0
|
作者
El Abed, Haikal [1 ]
Maegner, Volker [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Commun Technol IfN, D-38092 Braunschweig, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Preprocessing and feature extraction are very important steps in automatic cursive handwritten word recognition. Based on an offline recognition system for Arabic handwritten words which uses a semi-continuous 1-dimensional Hidden Markov Model recognizer different preprocessing combined with different feature sets are presented. The dependencies of the feature sets from preprocessing steps are discussed and their performances are compared using the IFN/ENIT-database of handwritten Arabic words. As the lower and upper baseline of each word are part of the ground truth of the database, the dependency of the feature set from the accuracy of the estimated baseline is evaluated.
引用
收藏
页码:974 / 978
页数:5
相关论文
共 50 条
  • [1] Krawtchouk Moment Feature Extraction for Neural Arabic Handwritten Words Recognition
    El Affar, Anass
    Ferdous, Khalid
    Cherkaoui, Abdeljabbar
    El Fadili, Hakim
    Qjidaa, Hassan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2009, 9 (01): : 417 - 423
  • [2] Krawtchouk Moment Feature Extraction for Neural Arabic Handwritten Words Recognition
    El Affar, A.
    Ferdous, K.
    El Fadili, H.
    Qjidaa, H.
    [J]. 2009 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS 2009), 2009, : 442 - 447
  • [3] Statistical geometric components of straight lines (SGCSL) feature extraction method for offline Arabic/Persian handwritten words recognition
    Tavoli, Reza
    Keyvanpour, Mohammadreza
    Mozaffari, Saeed
    [J]. IET IMAGE PROCESSING, 2018, 12 (09) : 1606 - 1616
  • [4] Offline Handwritten Numeral Recognition using Combination of Different Feature Extraction Techniques
    Munish Kumar
    M. K. Jindal
    R. K. Sharma
    Simpel Rani Jindal
    [J]. National Academy Science Letters, 2018, 41 : 29 - 33
  • [5] Offline Handwritten Numeral Recognition using Combination of Different Feature Extraction Techniques
    Kumar, Munish
    Jindal, M. K.
    Sharma, R. K.
    Jindal, Simpel Rani
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2018, 41 (01): : 29 - 33
  • [6] Recognition of Offline Handwritten Arabic Words Using a Few Structural Features
    Saidi, Abderrahmane
    Lakhdar, Abdelmouneim Moulay
    Beladgham, Mohammed
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 2875 - 2889
  • [7] Arabic handwritten document preprocessing and recognition
    Chammas, Edgard
    Mokbel, Chafic
    Likforman-Sulem, Laurence
    [J]. 2015 13TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2015, : 451 - 455
  • [8] Efficient Way of Feature Extraction for the Recognition of Handwritten Arabic Characters
    Boulid, Youssef
    Souhar, Abdelghani
    Elkettani, Mohamed Youssfi
    [J]. PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 946 - 958
  • [9] A Review of Feature Extraction Techniques for Handwritten Arabic Text Recognition
    El qacimy, Bouchra
    Hammouch, Ahmed
    Ait Kerroum, Mounir
    [J]. PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES (ICEIT 2015), 2015, : 241 - 245
  • [10] An Enhanced Technique for Offline Arabic Handwritten Words Segmentation
    Abdeen, Roqyiah M.
    Afifi, Ahmed
    El-Sisi, Ashraf B.
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT II, 2015, 9042 : 663 - 681