Spatiotemporal Modeling and Implementation for Radar-Based Rainfall Estimation

被引:10
|
作者
Kuang, Qiuming [1 ]
Yang, Xuebing [1 ]
Zhang, Wensheng [1 ]
Zhang, Guoping [2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China
[2] China Meteorol Adm, Publ Meteorol Serv Ctr, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Radar reflectivity; rain processes; rainfall estimation; spatiotemporal model; QUANTITATIVE PRECIPITATION ESTIMATION; ALGORITHM;
D O I
10.1109/LGRS.2016.2597170
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Radar-based rainfall estimation is one of the most important inputs for various meteorological applications. Although exciting progresses have been made in this area, accurate real-time rainfall estimation is still a significant opening topic that requires practical modeling. The research study presented in this letter improves rainfall estimation accuracy by proposing a random forest and linear chain conditional random-field-based spatiotemporal model (RANLIST). To apply this model for rainfall estimation, the implementing approach is presented. The advantages are listed as follows: 1) RANLIST improves rainfall estimation accuracy by exploiting both underlying local spatial structure of multiple radar reflectivity factors and time-series information of rain processes. 2) The time-series information of rain processes can be utilized in virtue of the presented implementation method. Experiments have been carried out over the radar-covered area of Quanzhou, China, in June and July 2014. Results show that RANLIST is superior to previous works.
引用
收藏
页码:1601 / 1605
页数:5
相关论文
共 50 条
  • [1] Improving radar-based estimation of rainfall over complex terrain
    Dinku, T
    Anagnostou, EN
    Borga, M
    [J]. JOURNAL OF APPLIED METEOROLOGY, 2002, 41 (12): : 1163 - 1178
  • [2] Improved high-resolution radar-based rainfall estimation
    Islam, Md. Rashedul
    Rasmussen, Peter F.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2008, 13 (09) : 910 - 913
  • [3] Optimizing Radar-Based Rainfall Estimation Using Machine Learning Models
    Hassan, Diar
    Isaac, George A.
    Taylor, Peter A.
    Michelson, Daniel
    [J]. REMOTE SENSING, 2022, 14 (20)
  • [4] RADAR-BASED FOREST BIOMASS ESTIMATION
    RAUSTE, Y
    HAME, T
    PULLIAINEN, J
    HEISKA, K
    HALLIKAINEN, M
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (14) : 2797 - 2808
  • [5] An Effective High Resolution Rainfall Estimation Based on Spatiotemporal Modeling
    Kuang, Qiuming
    Yang, Xuebing
    Zhang, Wensheng
    Zhang, Guoping
    Xiong, Naixue
    [J]. ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2018, 474 : 721 - 726
  • [6] Spatiotemporal Predictive Learning for Radar-Based Precipitation Nowcasting
    Wang, Xiaoying
    Zhao, Haixiang
    Zhang, Guojing
    Guan, Qin
    Zhu, Yu
    [J]. ATMOSPHERE, 2024, 15 (08)
  • [7] Uncertainties in radar-based Evaluation of Heavy Rainfall Events
    Treis, Adrian
    Becker, Rike
    Teichgraeber, Burkhard
    Pfister, Angela
    [J]. WASSERWIRTSCHAFT, 2021, 111 (7-8) : 25 - 29
  • [8] A radar-based rainfall climatology of Great Britain and Ireland
    Fairman, Jonathan G., Jr.
    Schultz, David M.
    Kirshbaum, Daniel J.
    Gray, Suzanne L.
    Barrett, Andrew I.
    [J]. WEATHER, 2015, 70 (05) : 153 - 158
  • [9] RADAR-BASED SHORT-TERM RAINFALL PREDICTION
    SEO, DJ
    SMITH, JA
    [J]. JOURNAL OF HYDROLOGY, 1992, 131 (1-4) : 341 - 367
  • [10] Modeling probabilistic radar rainfall estimation at ungauged locations based on spatiotemporal errors which correspond to gauged data
    Wu, Shiang-Jen
    Lien, Ho-Cheng
    Hsu, Chih-Tsung
    Chang, Che-Hao
    Shen, Jhih-Cyuan
    [J]. HYDROLOGY RESEARCH, 2015, 46 (01): : 39 - 59