Periodic Points of a p-Adic Operator and their p-Adic Gibbs Measures

被引:0
|
作者
Rozikov, U. A. [1 ,2 ,3 ]
Sattarov, I. A. [1 ,4 ]
Tukhtabaev, A. M. [4 ]
机构
[1] Inst Math, 9, Univ str, Tashkent 100174, Uzbekistan
[2] AKFA Univ, 264, Milliy Bog St, Yangiobod QFY, Tashkent 111221, Uzbekistan
[3] Natl Univ Uzbekistan, Univ str 4, Tashkent 100174, Uzbekistan
[4] Namangan State Univ, 316, Uychi str, Namangan 160100, Uzbekistan
关键词
Cayley tree; Gibbs measure; Hard-Core model; p-adic generalized Gibbs measure; CUBIC EQUATIONS; MODEL;
D O I
10.1134/S207004662205003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate generalized Gibbs measure (GGM) for p-adic Hard-Core (HC) model with a countable set of spin values on a Cayley tree of order k >= 2. This model is defined by p-adic parameters lambda(i), i is an element of N. We analyze p-adic functional equation which provides the consistency condition for the finite-dimensional generalized Gibbs distributions. Each solutions of the functional equation defines a GGM by p-adic version of Kolmogorov's theorem. We define p-adic Gibbs distributions as limit of the consistent family of finite-dimensional generalized Gibbs distributions and show that, for our p-adic HC model on a Cayley tree, such a Gibbs distribution does not exist. Under some conditions on parameters p, k and lambda i we find the number of translation invariant and two-periodic GGMs for the p-adic HC model on the Cayley tree of order two.
引用
收藏
页码:S30 / S44
页数:15
相关论文
共 50 条