An example of non-convex minimization and an application to Newton's problem of the body of least resistance

被引:23
|
作者
Lachand-Robert, T [1 ]
Peletier, MA
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[2] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
关键词
D O I
10.1016/S0294-1449(00)00062-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the minima of the functional integral (Omega) f (delu). The function f is not convex, the set Omega is a domain in R-2 and the minimum is sought over all convex functions on Omega with values in a given bounded interval. We prove that a minimum u is almost everywhere 'on the boundary of convexity', in the sense that there exists no open set on which u is strictly convex. In particular, wherever the Gaussian curvature is finite, it is zero. An important application of this result is the problem of the body of least resistance as formulated by Newton (where f(p) = 1 / (1 + \p \ (2)) and Omega is a ball), implying that the minimizer is not radially symmetric. This generalizes a result in [1]. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 50 条
  • [1] On the Newton aerodynamic problem for non-convex bodies
    Aleksenko, A. I.
    Plakhov, A. Yu.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (05) : 959 - 961
  • [2] Newton's aerodynamic for non-convex bodies
    Mainini, Edoardo
    Monteverde, Manuel
    Oudet, Edouard
    Percivale, Danilo
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (04) : 885 - 896
  • [3] NON-CONVEX MINIMIZATION PROBLEMS
    EKELAND, I
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) : 443 - 474
  • [4] Newton's problem of the body of minimal resistance in the class of convex developable functions
    Lachand-Robert, T
    Peletier, MA
    [J]. MATHEMATISCHE NACHRICHTEN, 2001, 226 : 153 - 176
  • [5] THE UNCONDITIONAL MINIMIZATION OF NON-CONVEX FUNCTIONS
    BEREZNEV, VA
    KARMANOV, VG
    TRETYAKOV, AA
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (11-12): : 101 - 104
  • [6] The numerical solution of Newton's problem of least resistance
    Wachsmuth, Gerd
    [J]. MATHEMATICAL PROGRAMMING, 2014, 147 (1-2) : 331 - 350
  • [7] Constrained Minimization Problem for Image Restoration Based on Non-Convex Hybrid Regularization
    Zhu, Jianguang
    Lv, Haijun
    Li, Kai
    Hao, Binbin
    [J]. IEEE ACCESS, 2020, 8 (08): : 162657 - 162667
  • [8] The numerical solution of Newton’s problem of least resistance
    Gerd Wachsmuth
    [J]. Mathematical Programming, 2014, 147 : 331 - 350
  • [9] Non-convex minimization -: The case of vector fields
    Brüning, E
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 17 - 23
  • [10] Efficient Regret Minimization in Non-Convex Games
    Hazan, Elad
    Singh, Karan
    Zhang, Cyril
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70