Electrical Interplay between Microorganisms and Iron-bearing Minerals

被引:6
|
作者
Qin Xuan [1 ]
Shi Liang [1 ,2 ]
机构
[1] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci, Sch Environm Studies, Dept Biol Sci & Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
extracellular electron transfer; microorganism; mineral; iron; mechanism; SIDEROXYDANS-LITHOTROPHICUS; ANAEROBIC METABOLISM; MEMBRANE CYTOCHROME; REDUCTION; IDENTIFICATION; CONDUCTIVITY; HEMATITE; CHARGE; GENES;
D O I
10.6023/A17010021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Iron-bearing minerals are widespread in soil and subsurface environment where they support microbial growth and metabolisms by serving as the terminal electron acceptors for microbial anaerobic respiration; the electron donors and energy sources for microbial autotrophic growth; the conductors for mediating electron transfer between microbial cells and the electron storage materials. Because microbial cell envelope is neither permeable to iron-bearing minerals nor electrical conductive, microorganisms have evolved capabilities to exchange electrons between the microbial cytoplasmic membrane and the minerals external to the microbial cells (i.e., microbial extracellular electron transfer). Microbial extracellular electron transfer differs fundamentally from the microbial electron transport chain for aerobic respiration. In this review, we discussed the molecular underpinnings of microbial extracellular electron transfer with iron-bearing minerals and applications of the related microorganisms in remediation of environmental contaminants, production of novel nano-materials, biomining and bioenergy production.
引用
收藏
页码:583 / 593
页数:11
相关论文
共 166 条
  • [1] Conductivity of individual Geobacter pili
    Adhikari, Ramesh Y.
    Malvankar, Nikhil S.
    Tuominen, Mark T.
    Lovley, Derek R.
    [J]. RSC ADVANCES, 2016, 6 (10): : 8363 - 8366
  • [2] The archaeal cell envelope
    Albers, Sonja-Verena
    Meyer, Benjamin H.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2011, 9 (06) : 414 - 426
  • [3] Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1
    Alves, Monica N.
    Neto, Sonia E.
    Alves, Alexandra S.
    Fonseca, Bruno M.
    Carrelo, Afonso
    Pacheco, Isabel
    Paquete, Catarina M.
    Soares, Claudio M.
    Louro, Ricardo O.
    [J]. FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [4] Anderson R. T., 2003, APPL ENVIRON MICROB, V69, P10
  • [5] Conductive Magnetite Nanoparticles Accelerate the Microbial Reductive Dechlorination of Trichloroethene by Promoting Interspecies Electron Transfer Processes
    Aulenta, Federico
    Rossetti, Simona
    Amalfitano, Stefano
    Majone, Mauro
    Tandoi, Valter
    [J]. CHEMSUSCHEM, 2013, 6 (03) : 433 - 436
  • [6] Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth
    Beckwith, Christopher R.
    Edwards, Marcus J.
    Lawes, Matthew
    Shi, Liang
    Butt, Julea N.
    Richardson, David J.
    Clarke, Thomas A.
    [J]. FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [7] Beliaev AS, 1998, J BACTERIOL, V180, P6292
  • [8] MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1
    Beliaev, AS
    Saffarini, DA
    McLaughlin, JL
    Hunnicutt, D
    [J]. MOLECULAR MICROBIOLOGY, 2001, 39 (03) : 722 - 730
  • [9] Nonredundant Roles for Cytochrome c2 and Two High-Potential Iron-Sulfur Proteins in the Photoferrotroph Rhodopseudomonas palustris TIE-1
    Bird, Lina J.
    Saraiva, Ivo H.
    Park, Shannon
    Calcada, Eduardo O.
    Salgueiro, Carlos A.
    Nitschke, Wolfgang
    Louro, Ricardo O.
    Newman, Dianne K.
    [J]. JOURNAL OF BACTERIOLOGY, 2014, 196 (04) : 850 - 858
  • [10] Bioenergetic challenges of microbial iron metabolisms
    Bird, Lina J.
    Bonnefoy, Violaine
    Newman, Dianne K.
    [J]. TRENDS IN MICROBIOLOGY, 2011, 19 (07) : 330 - 340