Optimal Entanglement Witnesses: A Scalable Data-Driven Approach

被引:0
|
作者
Frerot, Irenee [1 ,2 ]
Roscilde, Tommaso [3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Ave Carl Friedrich Gauss 3, Barcelona 08860, Spain
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Univ Lyon, Ecole Nonnale Super Lyon, CNRS UMR 5672, Lab Phys, 46 Allee Italie, F-69364 Lyon, France
关键词
405.3 Surveying - 741.1 Light/Optics - 921.6 Numerical Methods - 922.2 Mathematical Statistics - 931.4 Quantum Theory; Quantum Mechanics;
D O I
10.1103/PhysRevLett.127.040401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multipartite entanglement is a key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called quantum data), and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Scalable Data-Driven Monitoring Approach for Distribution Systems
    Ferdowsi, Mohsen
    Benigni, Andrea
    Loewen, Artur
    Zargar, Behzad
    Monti, Antonello
    Ponci, Ferdinanda
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (05) : 1300 - 1313
  • [2] Geometrically optimal gaits: a data-driven approach
    Brian Bittner
    Ross L. Hatton
    Shai Revzen
    [J]. Nonlinear Dynamics, 2018, 94 : 1933 - 1948
  • [3] A Data-Driven Approach for Inverse Optimal Control
    Liang, Zihao
    Hao, Wenjian
    Mou, Shaoshuai
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3632 - 3637
  • [4] Geometrically optimal gaits: a data-driven approach
    Bittner, Brian
    Hatton, Ross L.
    Revzen, Shai
    [J]. NONLINEAR DYNAMICS, 2018, 94 (03) : 1933 - 1948
  • [5] On a Probabilistic Approach for Inverse Data-Driven Optimal Control
    Garrabe, Emiland
    Jesawada, Hozefa
    Del Vecchio, Carmen
    Russo, Giovanni
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4411 - 4416
  • [6] Optimal purchasing of raw materials: A data-driven approach
    Muteki, Koji
    MacGregor, John F.
    [J]. AICHE JOURNAL, 2008, 54 (06) : 1554 - 1559
  • [7] A Scalable Approach for Data-Driven Taxi Ride-Sharing Simulation
    Ota, Masayo
    Huy Vo
    Silva, Claudio
    Freire, Juliana
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 888 - 897
  • [8] Characterization of optimal entanglement witnesses
    Qi, Xiaofei
    Hou, Jinchuan
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [9] Constructing optimal entanglement witnesses
    Chruscinski, Dariusz
    Pytel, Justyna
    Sarbicki, Gniewomir
    [J]. PHYSICAL REVIEW A, 2009, 80 (06):
  • [10] Data-Driven Optimal Transport
    Trigila, Giulio
    Tabak, Esteban G.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (04) : 613 - 648