A Distributed Computation Offloading Strategy for Edge Computing Based on Deep Reinforcement Learning

被引:0
|
作者
Lai, Hongyang [1 ]
Yang, Zhuocheng [1 ]
Li, Jinhao [1 ]
Wu, Celimuge [2 ]
Bao, Wugedele [3 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Univ Electrocommun, Tokyo, Japan
[3] Hohhot Minzu Coll, Hohhot, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Computation offloading; Markov Decision Process; Deep reinforcement learning; CLOUD;
D O I
10.1007/978-3-030-94763-7_6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mobile edge computing (MEC) has emerged as a new key technology to reduce time delay at the edge of wireless networks, which provides a new solution of distributed computing. But due to the heterogeneity and instability of wireless local area networks, how to obtain a generalized computing offloading strategy is still an unsolved problem. In this research, we deploy a real small-scale MEC system with one edge server and several smart mobile devices and propose a task offloading strategy for one subject device on optimizing time and energy consumption. We formulate the long-term offloading problem as an infinite Markov Decision Process (MDP). Then we use deep Q-learning algorithm to help the subject device to find its optimal offloading decision in the MDP model. Compared with a strategy with fixed parameters, our Q-learning agent shows better performance and higher robustness in a scenario with an unstable network condition.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 50 条
  • [1] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [2] Deep-Reinforcement-Learning-Based Distributed Computation Offloading in Vehicular Edge Computing Networks
    Geng, Liwei
    Zhao, Hongbo
    Wang, Jiayue
    Kaushik, Aryan
    Yuan, Shuai
    Feng, Wenquan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12416 - 12433
  • [3] Computation offloading Optimization in Edge Computing based on Deep Reinforcement Learning
    Zhu Qinghua
    Chang Ying
    Zhao Jingya
    Liu Yong
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1552 - 1558
  • [4] Distributed Edge Computing Offloading Algorithm Based on Deep Reinforcement Learning
    Li, Yunzhao
    Qi, Feng
    Wang, Zhili
    Yu, Xiuming
    Shao, Sujie
    [J]. IEEE ACCESS, 2020, 8 : 85204 - 85215
  • [5] Deep Reinforcement Learning-based computation offloading and distributed edge service caching for Mobile Edge Computing
    Xie, Mande
    Ye, Jiefeng
    Zhang, Guoping
    Ni, Xueping
    [J]. COMPUTER NETWORKS, 2024, 250
  • [6] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [7] Deep reinforcement learning for the computation offloading in MIMO-based Edge Computing
    Sadiki, Abdeladim
    Bentahar, Jamal
    Dssouli, Rachida
    En-Nouaary, Abdeslam
    Otrok, Hadi
    [J]. AD HOC NETWORKS, 2023, 141
  • [8] Computation offloading strategy based on deep reinforcement learning for connected and autonomous vehicle in vehicular edge computing
    Lin, Bing
    Lin, Kai
    Lin, Changhang
    Lu, Yu
    Huang, Ziqing
    Chen, Xinwei
    [J]. JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2021, 10 (01):
  • [9] Computation offloading strategy based on deep reinforcement learning for connected and autonomous vehicle in vehicular edge computing
    Bing Lin
    Kai Lin
    Changhang Lin
    Yu Lu
    Ziqing Huang
    Xinwei Chen
    [J]. Journal of Cloud Computing, 10
  • [10] Deep reinforcement learning for computation offloading in mobile edge computing environment
    Chen, Miaojiang
    Wang, Tian
    Zhang, Shaobo
    Liu, Anfeng
    [J]. COMPUTER COMMUNICATIONS, 2021, 175 : 1 - 12