Fault Detection and Isolation of Spacecraft Thrusters by Using Principal Component Analysis

被引:0
|
作者
Regaieg, Marwa [1 ]
Nasri, Othman [1 ]
Dague, Philippe [2 ,3 ]
机构
[1] Univ Sousse, Natl Engn Sch Sousse ENISO, SAGE Lab, Sousse Erriadh 4023, Tunisia
[2] Univ Paris 11, CNRS, Comp Sci Lab, F-91405 Orsay, France
[3] INRIA Saclay le de France, F-91405 Orsay, France
关键词
IDENTIFICATION; RECONSTRUCTION; SELECTION; NUMBER; PCA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper a model-based FDI approach is proposed to achieve both fault detection and isolation of a spacecraft thrusters during the rendezvous phase of the Mars Sample Return (MSR) mission. To estimate the relationships between the various variable of the process, the principal component analysis (PCA) is adopted. To affirm the feasibility of the proposed FDI approach, historical data set representing the opening rates of the spacecraft thrusters are considered. Tests results demonstrate that detection and isolation of single faults are successfully accomplished.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fault Detection and Isolation of spacecraft thrusters using an extended principal component analysis to interval data
    Imen Gueddi
    Othman Nasri
    Kamal Benothman
    Philippe Dague
    [J]. International Journal of Control, Automation and Systems, 2017, 15 : 776 - 789
  • [2] Fault Detection and Isolation of Spacecraft Thrusters using an Extended Principal Component Analysis to Interval Data
    Gueddi, Imen
    Nasri, Othman
    Benothman, Kamal
    Dague, Philippe
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (02) : 776 - 789
  • [3] Fault detection and isolation in transient states using principal component analysis
    Garcia-Alvarez, D.
    Fuente, M. J.
    Sainz, G. I.
    [J]. JOURNAL OF PROCESS CONTROL, 2012, 22 (03) : 551 - 563
  • [4] Fault detection and isolation with robust principal component analysis
    Tharrault, Yvon
    Mourot, Gilles
    Ragot, Jose
    [J]. 2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 1538 - 1543
  • [5] FAULT DETECTION AND ISOLATION WITH ROBUST PRINCIPAL COMPONENT ANALYSIS
    Tharrault, Yvon
    Mourot, Gilles
    Ragot, Jose
    Maquin, Didier
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (04) : 429 - 442
  • [6] Sensor Fault Detection, Isolation and Reconstruction Using Nonlinear Principal Component Analysis
    Mohamed-Faouzi Harkat
    Salah Djelel
    Noureddine Doghmane
    Mohamed Benouaret
    [J]. Machine Intelligence Research, 2007, (02) : 149 - 155
  • [7] Incipient fault detection and isolation in a PWR plant using Principal Component Analysis
    Kaistha, N
    Upadhyaya, BR
    [J]. PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 2119 - 2120
  • [8] Sensor Fault Detection, Isolation and Reconstruction Using Nonlinear Principal Component Analysis
    Harkat, Mohamed-Faouzi
    Djelel, Salah
    Doghmane, Noureddine
    Benouaret, Mohamed
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2007, 4 (02) : 149 - 155
  • [9] Determination of principal component analysis models for sensor fault detection and isolation
    Anissa Benaicha
    Gilles Mourot
    Kamel Benothman
    José Ragot
    [J]. International Journal of Control, Automation and Systems, 2013, 11 : 296 - 305
  • [10] Determination of principal component analysis models for sensor fault detection and isolation
    Benaicha, Anissa
    Mourot, Gilles
    Benothman, Kamel
    Ragot, Jose
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2013, 11 (02) : 296 - 305