Hamilton-Jacobi approach for first order actions and theories with higher derivatives

被引:21
|
作者
Bertin, M. C. [1 ]
Pimentel, B. M. [1 ]
Pompeia, P. J. [1 ,2 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, SP, Brazil
[2] Inst Fomento & Coordenacao Ind, Div Confiabilidade Metrol Aerosp, BR-12228901 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Hamilton-Jacobi formalism; singular systems; first order actions; higher order derivatives;
D O I
10.1016/j.aop.2007.11.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we analyze systems described by Lagrangians with higher order derivatives in the context of the Hamilton-Jacobi formalism for first order actions. Two different approaches are studied here: the first one is analogous to the description of theories with higher derivatives in the hamiltonian formalism according to [D.M. Gitman, S.L. Lyakhovich, I.V. Tyutin, Soviet Phys. J. 26 (1983) 730; D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, New York, Berlin, 1990] the second treats the case where degenerate coordinate are present, in an analogy to reference [D.M. Gitman, I.V. Tyutin, Nucl. Phys. B 630 (2002) 509]. Several examples are analyzed where a comparison between both approaches is made. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:527 / 547
页数:21
相关论文
共 50 条
  • [1] ON THE HAMILTON-JACOBI THEORY WITH DERIVATIVES OF HIGHER-ORDER
    CONSTANTELOS, GC
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 84 (01): : 91 - 101
  • [2] THE HAMILTON-JACOBI FORMALISM FOR HIGHER-ORDER FIELD THEORIES
    Vitagliano, Luca
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (08) : 1413 - 1436
  • [3] Generalization of the Hamilton-Jacobi approach for higher-order singular systems
    Pimentel, BM
    Teixeira, RG
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (06): : 805 - 817
  • [4] HAMILTON-JACOBI THEORIES FOR STRINGS
    KASTRUP, HA
    RINKE, M
    [J]. PHYSICS LETTERS B, 1981, 105 (2-3) : 191 - 196
  • [5] GENERALIZED HAMILTON-JACOBI THEORIES
    BAUMEISTER, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (11) : 2377 - 2387
  • [6] A Hamilton-Jacobi formalism for higher order implicit Lagrangians
    Esen, Ogul
    de Leon, Manuel
    Sardon, Cristina
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (07)
  • [7] Higher-order Hamilton dynamics and Hamilton-Jacobi divergence PDE
    Treanta, Savin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) : 547 - 560
  • [8] On controlled Hamilton and Hamilton-Jacobi differential equations of higher-order
    Treanta, Savin
    Nonlaopon, Kamsing
    Khan, Muhammad Bilal
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Sobolev regularity for the first order Hamilton-Jacobi equation
    Cardaliaguet, Pierre
    Porretta, Alessio
    Tonon, Daniela
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 3037 - 3065
  • [10] LINEAR HIGHER ORDER PDEs OF HAMILTON-JACOBI AND PARABOLIC TYPE
    Treanta, Savin
    Varsan, Constantin
    [J]. MATHEMATICAL REPORTS, 2014, 16 (02): : 319 - 329