Errors in radial velocity variance from Doppler wind lidar

被引:5
|
作者
Wang, H. [1 ]
Barthelmie, R. J. [1 ]
Doubrawa, P. [1 ]
Pryor, S. C. [2 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
TURBULENCE; SPECTRUM; LAYER; PERFORMANCE; STATISTICS; FLUX;
D O I
10.5194/amt-9-4123-2016
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Using both statistically simulated and observed data, this paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, the systematic error is negligible but the random error exceeds about 10 %.
引用
收藏
页码:4123 / 4139
页数:17
相关论文
共 50 条
  • [1] Radar wind profiler radial velocity: A comparison with Doppler lidar
    Cohn, SA
    Goodrich, RK
    [J]. JOURNAL OF APPLIED METEOROLOGY, 2002, 41 (12): : 1277 - 1282
  • [2] Estimating the Parameters of Wind Turbulence from Spectra of Radial Velocity Measured by a Pulsed Doppler Lidar
    Banakh, Viktor A.
    Smalikho, Igor N.
    Falits, Andrey V.
    Sherstobitov, Artem M.
    [J]. REMOTE SENSING, 2021, 13 (11)
  • [3] Research on the radial velocity bias in doppler wind lidar based on Fabry-Perot interferometer
    Zhang, Feifei
    Wang, Guocheng
    Sun, Dongsong
    Dou, Xiankang
    Zhou, Yingjie
    Hu, Dongdong
    Li, Jianyue
    [J]. Zhongguo Jiguang/Chinese Journal of Lasers, 2015, 42 (08):
  • [4] Estimation of radial wind velocity for the non-Gaussian statistics of the Doppler lidar signal in the turbulent atmosphere
    Shelekhova, Evgeniya A.
    Shelekhov, Alexander P.
    [J]. LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING VII, 2011, 8182
  • [5] ALADIN: An atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space
    Krawczyk, R
    Ghibaudo, JB
    Labandibar, JY
    Willetts, D
    Vaughan, M
    Pearson, G
    Harris, M
    Flamant, PH
    Salamitou, P
    Dabas, A
    Charasse, R
    Midavaine, T
    Royer, M
    Heimel, H
    [J]. INFRARED SPACEBORNE REMOTE SENSING IV, 1996, 2817 : 2 - 13
  • [6] Estimation of wind velocity and backscatter signal intensity from Doppler lidar returns
    Hardesty, RM
    Brewer, WA
    Rye, BJ
    [J]. THIRTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 269 - 273
  • [7] VERTICAL WIND VELOCITY-MEASUREMENTS BY A DOPPLER LIDAR AND COMPARISONS WITH A DOPPLER SODAR
    CONGEDUTI, F
    FIOCCO, G
    ADRIANI, A
    GUARRELLA, C
    [J]. APPLIED OPTICS, 1981, 20 (12): : 2048 - 2054
  • [8] Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar
    Banakh, V. A.
    Smalikho, I. N.
    Falits, A. V.
    [J]. OPTICS EXPRESS, 2017, 25 (19): : 22679 - 22692
  • [9] Estimation of wind turbulence parameters from spectra of the vertical wind velocity measured by a pulsed coherent Doppler lidar
    Smalikho, Igor N.
    Banakh, Viktor A.
    Sherstobitov, Artem M.
    Falits, Andrey, V
    [J]. 27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS, 2021, 11916
  • [10] POTENTIAL FOR COHERENT DOPPLER WIND VELOCITY LIDAR USING NEODYMIUM LASERS
    KANE, TJ
    ZHOU, B
    BYER, RL
    [J]. APPLIED OPTICS, 1984, 23 (15): : 2477 - 2481