An Efficient Primal-Dual Method for the Obstacle Problem

被引:11
|
作者
Zosso, Dominique [1 ]
Osting, Braxton [2 ]
Xia, Mandy [3 ]
Osher, Stanley J. [3 ]
机构
[1] Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Obstacle problem; Minimal surface; Convex optimization; Primal-dual hybrid gradients; GENERAL FRAMEWORK; ALGORITHMS; CONVERGENCE; MOMENTUM; DESCENT;
D O I
10.1007/s10915-017-0420-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the non-linearized and linearized obstacle problems efficiently using a primal-dual hybrid gradients method involving projection and/or penalty. Since this method requires no matrix inversions or explicit identification of the contact set, we find that this method, on a variety of test problems, achieves the precision of previous methods with a speed up of 1-2 orders of magnitude. The derivation of this method is disciplined, relying on a saddle point formulation of the convex problem, and can be adapted to a wide range of other constrained convex optimization problems.
引用
收藏
页码:416 / 437
页数:22
相关论文
共 50 条
  • [1] An Efficient Primal-Dual Method for the Obstacle Problem
    Dominique Zosso
    Braxton Osting
    Mandy(Mengqi) Xia
    Stanley J. Osher
    [J]. Journal of Scientific Computing, 2017, 73 : 416 - 437
  • [2] Efficient primal-dual heuristic for a dynamic location problem
    Dias, Joana
    Captivo, M. Eugenia
    Climaco, Joao
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2007, 34 (06) : 1800 - 1823
  • [3] An efficient primal-dual method for solving non-smooth machine learning problem
    Lyaqini, S.
    Nachaoui, M.
    Hadri, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 155
  • [4] PRIMAL-DUAL ALGORITHMS FOR THE ASSIGNMENT PROBLEM
    CARPANETO, G
    TOTH, P
    [J]. DISCRETE APPLIED MATHEMATICS, 1987, 18 (02) : 137 - 153
  • [5] Primal-dual Newton method for a linear problem of semidefinite programming
    Zhadan, V. G.
    Orlov, A. A.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (02): : 157 - 169
  • [6] A PRIMAL-DUAL PROJECTION ALGORITHM FOR EFFICIENT
    Schiela, Anton
    Stoecklein, Matthias
    Weiser, Martin
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A4095 - A4120
  • [7] QUADRATIC CONVERGENCE IN A PRIMAL-DUAL METHOD
    MEHROTRA, S
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (03) : 741 - 751
  • [8] ON SIMPLIFYING THE PRIMAL-DUAL METHOD OF MULTIPLIERS
    Zhang, Guoqiang
    Heusdens, Richard
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4826 - 4830
  • [9] A primal-dual method for SVM training
    Djemai, Samia
    Brahmi, Belkacem
    Bibi, Mohand Ouamer
    [J]. NEUROCOMPUTING, 2016, 211 : 34 - 40
  • [10] Distributed Regularized Primal-Dual Method
    Badiei, Masoud
    Li, Na
    [J]. 2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 540 - 544