Sampling in Paley-Wiener spaces on combinatorial graphs

被引:174
|
作者
Pesenson, Isaac [1 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
关键词
combinatorial graph; combinatorial Laplace operator; discrete Paley-Wiener spaces; Shannon sampling; discrete Plancherel-Polya and Poincare inequalities;
D O I
10.1090/S0002-9947-08-04511-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A notion of Paley-Wiener spaces on combinatorial graphs is introduced. It is shown that functions from some of these spaces are uniquely determined by their values on some sets of vertices which are called the uniqueness sets. Such uniqueness sets are described in terms of Poincare-Wirtinger-type inequalities. A reconstruction algorithm of Paley-Wiener functions from uniqueness sets which uses the idea of frames in Hilbert spaces is developed. Special consideration is given to the n-dimensional lattice, homogeneous trees, and eigenvalue and eigenfunction problems on finite graphs.
引用
收藏
页码:5603 / 5627
页数:25
相关论文
共 50 条
  • [1] Variational Splines and Paley-Wiener Spaces on Combinatorial Graphs
    Pesenson, Isaac
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 29 (01) : 1 - 21
  • [2] SAMPLING IN PALEY-WIENER SPACES ON COMBINATORIAL GRAPHS (vol 360, pg 5603, 2008)
    Pesenson, Isaac
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) : 3951 - 3951
  • [3] Signal processing on graphs: Case of sampling in Paley-Wiener spaces
    Borodin, Valeria
    Snoussi, Hichem
    Hnaien, Faicel
    Labadie, Nacima
    [J]. SIGNAL PROCESSING, 2018, 152 : 130 - 140
  • [4] Multivariate polynomial interpolation and sampling in Paley-Wiener spaces
    Bailey, B. A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2012, 164 (04) : 460 - 487
  • [5] Weighted Paley-Wiener spaces
    Lyubarskii, YI
    Seip, K
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (04) : 979 - 1006
  • [6] Sampling and quasi-sampling in rotation invariant Paley-Wiener spaces
    Ohligs, B
    Stens, RL
    [J]. TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS, PROCEEDINGS, 2002, 72 : 77 - 91
  • [7] Variational Splines and Paley–Wiener Spaces on Combinatorial Graphs
    Isaac Pesenson
    [J]. Constructive Approximation, 2009, 29 : 1 - 21
  • [8] The Paley-Wiener theorem for spaces of sequences
    Napalkov, VV
    Zaitseva, AV
    [J]. DOKLADY MATHEMATICS, 2000, 62 (02) : 180 - 182
  • [9] Paley-Wiener theorems for hyperbolic spaces
    Andersen, NB
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (01) : 66 - 119
  • [10] Fractional Paley-Wiener and Bernstein spaces
    Monguzzi, Alessandro
    Peloso, Marco M.
    Salvatori, Maura
    [J]. COLLECTANEA MATHEMATICA, 2021, 72 (03) : 615 - 643