Piecewise testable languages via combinatorics on words

被引:13
|
作者
Klima, Ondrej [1 ]
机构
[1] Masaryk Univ, Fac Sci, Dept Math & Stat, CS-61137 Brno, Czech Republic
关键词
Piecewise testable languages; Syntactic congruence; THEOREM;
D O I
10.1016/j.disc.2011.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A regular language L over an alphabet A is called piecewise testable if it is a finite Boolean combination of languages of the form A*a(1)A*a(2)A* ... A*a(l)A*, where a(1) ... , a(l) is an element of A, l >= 0. An effective characterization of piecewise testable languages was given in 1972 by Simon who proved that a language L is piecewise testable if and only if its syntactic monoid is J-trivial. Nowadays, there exist several proofs of this result based on various methods from algebraic theory of regular languages. Our contribution adds a new purely combinatorial proof. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2124 / 2127
页数:4
相关论文
共 50 条
  • [1] Hierarchies of Piecewise Testable Languages
    Klima, Ondrej
    Polak, Libor
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2008, 5257 : 479 - 490
  • [2] Piecewise testable tree languages
    Bojanczyk, Mikolaj
    Segoufin, Luc
    Straubing, Howard
    TWENTY-THIRD ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2008, : 442 - +
  • [3] PIECEWISE TESTABLE TREE LANGUAGES
    Bojanczyk, Mikolaj
    Segoufin, Luc
    Straubing, Howard
    LOGICAL METHODS IN COMPUTER SCIENCE, 2012, 8 (03)
  • [4] HIERARCHIES OF PIECEWISE TESTABLE LANGUAGES
    Klima, Ondrej
    Polak, Libor
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (04) : 517 - 533
  • [5] The Boolean Algebra of Piecewise Testable Languages
    Konovalov, Anton
    Selivanov, Victor
    PURSUIT OF THE UNIVERSAL, 2016, 9709 : 292 - 301
  • [6] Words, languages and combinatorics - Foreword
    Ito, M
    THEORETICAL COMPUTER SCIENCE, 2004, 324 (01) : 1 - 1
  • [7] Separating Regular Languages by Piecewise Testable and Unambiguous Languages
    Place, Thomas
    van Rooijen, Lorijn
    Zeitoun, Marc
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2013, 2013, 8087 : 729 - 740
  • [8] On piecewise testable, starfree, and recognizable picture languages
    Matz, O
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, 1998, 1378 : 203 - 210
  • [9] Biautomata for k-Piecewise Testable Languages
    Klima, Ondrej
    Polak, Libor
    DEVELOPMENTS IN LANGUAGE THEORY (DLT 2012), 2012, 7410 : 344 - 355
  • [10] On Boolean combinations forming piecewise testable languages
    Masopust, Tomas
    Thomazo, Michael
    THEORETICAL COMPUTER SCIENCE, 2017, 682 : 165 - 179