Generating Residue Number System Bases

被引:2
|
作者
Bajard, Jean-Claude [1 ]
Fukushima, Kazuhide [2 ]
Kiyomoto, Shinsaku [2 ]
Plantard, Thomas [3 ]
Sipasseuth, Arnaud [2 ,3 ]
Susilo, Willy [3 ]
机构
[1] Sorbonne Univ, CNRS, INRIA, Inst Math Jussieu Paris Rive Gauche, F-75005 Paris, France
[2] Univ Wollongong, Inst Cybersecur & Cryptol, Wollongong, NSW, Australia
[3] KDDI Res Inc, Informat Secur Lab, Saitama, Japan
关键词
Residue Number Systems; EXPONENTIATION;
D O I
10.1109/ARITH51176.2021.00027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Residue number systems provide efficient techniques for speeding up calculations and/or protecting against side channel attacks when used in the context of cryptographic engineering. One of the interests of such systems is their scalability, as the existence of large bases for some specialized systems is often an open question. In this paper, we present highly optimized methods for generating large bases for residue number systems and, in some cases, the largest possible bases. We show their efficiency by demonstrating their improvement over the state-of-the-art bases reported in the literature. This work make it possible to address the problem of the scalability issue of finding new bases for a specific system that arises whenever a parameter changes, and possibly open new application avenues.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 50 条
  • [1] SELECTION OF BASES FOR A RESIDUE NUMBER SYSTEM
    VINNAKOTA, B
    ELECTRONICS LETTERS, 1994, 30 (11) : 836 - 837
  • [2] ON THE POLYNOMIAL RESIDUE NUMBER SYSTEM
    SKAVANTZOS, A
    TAYLOR, FJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (02) : 376 - 382
  • [3] ON RESIDUE NUMBER SYSTEM DECODING
    THUN, RE
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (05): : 1346 - 1347
  • [4] Matrices for Generating Orthogonal Eigenvector Bases of Trigonometric Number Transforms
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 721 - 725
  • [5] RESIDUE NUMBER SYSTEM IMPLEMENTATIONS OF NUMBER THEORETIC TRANSFORMS IN COMPLEX RESIDUE RINGS
    BARANIECKA, AZ
    JULLIEN, GA
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (03): : 285 - 291
  • [6] Symmetric Cryptoalgorithms in the Residue Number System
    Kasianchuk, M. M.
    Yakymenko, I. Z.
    Nykolaychuk, Ya M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (02) : 329 - 336
  • [7] Residue number system scaling schemes
    Kong, YN
    Phillips, B
    Smart Structures, Devices, and Systems II, Pt 1 and 2, 2005, 5649 : 525 - 536
  • [8] Residue Number System Asymmetric Cryptoalgorithms
    Nykolaychuk, Ya M.
    Yakymenko, I. Z.
    Vozna, N. Ya
    Kasianchuk, M. M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2022, 58 (04) : 611 - 618
  • [9] Symmetric Cryptoalgorithms in the Residue Number System
    M. M. Kasianchuk
    I. Z. Yakymenko
    Ya. M. Nykolaychuk
    Cybernetics and Systems Analysis, 2021, 57 : 329 - 336
  • [10] Parallel Computation of Residue Number System
    Chang, C. C.
    Kuo, Y. T.
    Lai, Y. P.
    2006 INTERNATIONAL CONFERENCE ON COMPUTING & INFORMATICS (ICOCI 2006), 2006, : 84 - +