Finite-horizon suboptimal control of Markov jump linear parameter-varying systems

被引:2
|
作者
Lopes, R. O. [1 ,2 ]
Mendes, Eduardo M. A. M. [3 ]
Torres, L. A. B. [3 ]
Vargas, A. N. [4 ]
Palhares, R. M. [3 ]
机构
[1] Univ Fed Minas Gerais, Grad Program Elect Engn, Belo Horizonte, MG, Brazil
[2] Univ Fed Itajuba, Itabira, MG, Brazil
[3] Univ Fed Minas Gerais, Dept Elect Engn, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Tecnol Fed Parana, UTFPR, Cornelio Procopio, PR, Brazil
关键词
Robust control; finite-time; Markov jump linear systems; linear matrix inequalities; AUTOMOTIVE ELECTRONIC THROTTLE; NO MODE OBSERVATION; LPV SYSTEMS; FEEDBACK; H-2-CONTROL; STABILITY; POSITION;
D O I
10.1080/00207179.2020.1728387
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a strategy to compute a suboptimal solution to the finite-horizon linear-quadratic control problem for Markov jump linear parameter-varying systems. The system parameters depend not only on a Markov chain but also on linear parameter-varying elements that take values in convex polytopic sets. The suboptimal approach represents an attempt towards solving the optimal control problem that remains unsolved in the literature. Illustrating that such a suboptimal approach can be of interest when solving practical control problems. Experimental results on the control of an automotive throttle valve subject to failures driven by a Markov chain are discussed, thus supporting the usefulness of the theoretical findings.
引用
收藏
页码:2659 / 2668
页数:10
相关论文
共 50 条
  • [1] Finite-horizon bounded amplitude performance of linear parameter varying systems
    Bett, CJ
    Lemmon, M
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 381 - 385
  • [2] Finite-horizon Dynamic Compensation of Markov Jump Linear Systems without Mode Observation
    Dolgov, Maxim
    Kurz, Gerhard
    Hanebeck, Uwe D.
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2757 - 2762
  • [3] Finite-Horizon Covariance Control of Linear Time-Varying Systems
    Goldshtein, Maxim
    Tsiotras, Panagiotis
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [4] Dynamic Output Feedback Finite-Horizon Control for Markov Jump Systems With Actuator Saturations
    Yang, Shuan-Qiang
    Lin, Li-Yu
    [J]. IEEE ACCESS, 2019, 7 : 132587 - 132593
  • [5] Receding-horizon control for input constrained linear parameter-varying systems
    Lee, YI
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2004, 151 (05): : 547 - 553
  • [6] A fault detection and isolation filter design method for Markov jump linear parameter-varying systems
    Gagliardi, Gianfranco
    Casavola, Alessandro
    Famularo, Domenico
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2012, 26 (03) : 241 - 257
  • [7] Cooperative Control of Linear Parameter-Varying Systems
    Seyboth, Georg S.
    Schmidt, Gerd S.
    Allgoewer, Frank
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2407 - 2412
  • [8] Receding horizon control of Markov Jump Linear Systems
    doVal, JBR
    Basar, T
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3195 - 3199
  • [9] Distributed Control of Linear Parameter-Varying Decomposable Systems
    Hoffmann, C.
    Eichler, A.
    Werner, H.
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2380 - 2385
  • [10] Model Predictive Control for Linear Parameter-Varying Systems
    Morfin-Magana, Rodrigo
    Rodriguez-Flores, Ruben
    Ramos-Paz, Serafin
    Jesus Rico-Melgoza, J.
    Ornelas-Tellez, Fernando
    [J]. 2018 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2018,