Shrinkage estimation for multivariate time series

被引:0
|
作者
Liu, Yan [1 ]
Tanida, Yoshiyuki [2 ]
Taniguchi, Masanobu [3 ]
机构
[1] Waseda Univ, Inst Math Sci, Tokyo, Japan
[2] Waseda Univ, Sch Fundamental Sci & Engn, Tokyo, Japan
[3] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan
关键词
Shrinkage estimation; Multivariate stationary processes; Shrinkage function; Sample mean; James-Stein estimator; Spectral density matrix;
D O I
10.1007/s11203-021-09248-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with shrinkage estimators for the mean of p-dimensional Gaussian stationary processes. The shrinkage estimators are expressed by a shrinkage function, including the sample mean and the James-Stein estimator as special cases. We evaluate the mean squared error of such shrinkage estimators from the true mean of a p-dimensional Gaussian vector stationary process with p >= 3. A sufficient condition for shrinkage estimators improving the mean squared error upon the sample mean is given in terms of the shrinkage function and the spectral density matrix. In addition, a shrinkage estimator, providing the most significant improvement to the sample mean, is proposed as a theoretical result. The remarkable performance of the proposed shrinkage estimator, compared with the sample mean and the James-Stein estimator, is illustrated by a thorough numerical simulation. A real data analysis also witnesses the applicability of the proposed estimator for multivariate time series.
引用
下载
收藏
页码:733 / 751
页数:19
相关论文
共 50 条