Thermal radiative characteristics of nanostructured tungsten at high-temperature

被引:4
|
作者
Takamura, S. [1 ,4 ]
Uesugi, Y. [2 ]
Kikuchi, Y. [3 ]
Nagata, M. [3 ]
Yamada, K. [4 ]
Kobayashi, T. [4 ]
Maenaka, S. [4 ]
Fujita, K. [4 ]
Kurishita, H. [5 ]
机构
[1] Aichi Inst Technol, Res Inst Ind Technol, Yakusa Cho, Toyota 4700392, Japan
[2] Kanazawa Univ, Inst Sci & Engn, Fac Elect & Comp Engn, Kanazawa, Ishikawa 9201192, Japan
[3] Univ Hyogo, Grad Sch Engn, 2167 Shosha, Himeji, Hyogo 6712280, Japan
[4] YUMEX Inc, Itota 400,Yumesaki Cho, Himeji, Hyogo 6712114, Japan
[5] Tohoku Univ, Interact Res Ctr Nucl Mat Sci, 2145-2 Narita Cho, Oarai, Ibaraki 3111313, Japan
基金
日本学术振兴会;
关键词
Nanostructure; Tungste; Black-body radiation; Dopant effect; FIBER-FORM NANOSTRUCTURE; SURFACE; DIFFUSION;
D O I
10.1016/j.surfin.2017.07.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fiber-form nanostructures grown on tungsten (W) surfaces with helium (He) plasma irradiation exhibit an excellent thermal radiative property at low sample temperatures up to 1200 degrees C. To maintain this radiative property at higher temperatures, the recovery to undefected surface and annealing effect of nanostructured W surfaces need to be investigated while focusing on the dopant effect. TFGR-W-1.1% TiC/H (toughing, fine-grained recrystallized tungsten with TiC dispersoids) was experimentally found to have the best characteristics among the tested doped W samples. However, it was noted and discussed that a further improvement at higher temperatures needs an additional surface treatment. Possibilities of maintaining complicated structures with nano-scale lengths are discussed in terms of dopant pinning effect and self-diffusion on tungsten surface.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [1] RADIATIVE CHARACTERISTICS OF HIGH-TEMPERATURE IRON PHASES
    PELETSKII, VE
    PATRUSHEVA, LG
    SHUR, BA
    [J]. HIGH TEMPERATURE, 1984, 22 (01) : 48 - 52
  • [2] Thermal stability and high-temperature deformation of tungsten nanocomposite
    Ignatiev, D. N.
    Pavlov, A. A.
    Solntseva, E. S.
    Taubin, M. L.
    Yaskolko, A. A.
    [J]. 10TH INTERNATIONAL SCHOOL-CONFERENCE ON MATERIALS FOR EXTREME ENVIRONMENT: DEVELOPMENT, PRODUCTION AND APPLICATION (MEEDPA10), 2016, 130
  • [4] WOOD,WD - HIGH-TEMPERATURE MATERIALS (THERMAL RADIATIVE PROPERTIES)
    MICHEL, D
    [J]. REVUE INTERNATIONALE DES HAUTES TEMPERATURES ET DES REFRACTAIRES, 1966, 3 (04): : 464 - &
  • [5] HIGH-TEMPERATURE THERMAL CONDUCTIVITY OF PRESSED TUNGSTEN FILAMENT WASTES
    BARABANO.LG
    MUROVANN.SG
    MARMER, EN
    [J]. HIGH TEMPERATURE, 1969, 7 (03) : 534 - &
  • [6] HIGH-TEMPERATURE THERMAL ANALYSIS USING THE TUNGSTEN MOLYBDENUM THERMOCOUPLE
    GREENAWAY, HT
    JOHNSTONE, STM
    MCQUILLAN, MK
    [J]. JOURNAL OF THE INSTITUTE OF METALS, 1951, 80 (03): : 109 - 114
  • [7] HIGH-TEMPERATURE THERMAL CHARACTERISTICS OF MICROELECTRONIC PACKAGES
    BAXTER, GK
    ANSLOW, JW
    [J]. IEEE TRANSACTIONS ON PARTS HYBRIDS AND PACKAGING, 1977, 13 (04): : 385 - 390
  • [8] HIGH-TEMPERATURE EMBRITTLEMENT OF TUNGSTEN
    BABAK, AV
    USKOV, EI
    [J]. STRENGTH OF MATERIALS, 1983, 15 (05) : 667 - 672
  • [9] HIGH-TEMPERATURE SLIP IN TUNGSTEN
    LEBER, S
    PUGH, JW
    [J]. TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1960, 218 (05): : 791 - 793
  • [10] HIGH-TEMPERATURE POROSITY IN TUNGSTEN
    BRETT, J
    FRIEDMAN, S
    [J]. METALLURGICAL TRANSACTIONS, 1972, 3 (04): : 769 - &