MCMC Bayesian Estimation in FIEGARCH Models

被引:2
|
作者
Prass, Taiane S. [1 ]
Lopes, Silvia R. C. [1 ]
Achcar, Jorge A. [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Math Inst, Porto Alegre, RS, Brazil
[2] Univ Sao Paulo, Sch Med, Dept Social Med, Sao Paulo, SP, Brazil
关键词
Bayesian inference; FIEGARCH processes; Long-range dependence; MCMC; 62F15; 62M10; LONG-MEMORY;
D O I
10.1080/03610918.2014.932800
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian inference for fractionally integrated exponential generalized autoregressive conditional heteroscedastic (FIEGARCH) models using Markov chain Monte Carlo (MCMC) methods is described. A simulation study is presented to assess the performance of the procedure, under the presence of long-memory in the volatility. Samples from FIEGARCH processes are obtained upon considering the generalized error distribution (GED) for the innovation process. Different values for the tail-thickness parameter are considered covering both scenarios, innovation processes with lighter ( > 2) and heavier ( < 2) tails than the Gaussian distribution ( = 2). A comparison between the performance of quasi-maximum likelihood (QML) and MCMC procedures is also discussed. An application of the MCMC procedure to estimate the parameters of a FIEGARCH model for the daily log-returns of the S&P500 U.S. stock market index is provided.
引用
收藏
页码:3238 / 3258
页数:21
相关论文
共 50 条
  • [1] Bayesian MCMC estimation of the rose of directions
    Prokesová, M
    KYBERNETIKA, 2003, 39 (06) : 703 - 717
  • [2] Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models
    夏威
    代小霞
    冯圆
    Chinese Physics B, 2015, (12) : 622 - 628
  • [3] Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models
    Xia Wei
    Dai Xiao-Xia
    Feng Yuan
    CHINESE PHYSICS B, 2015, 24 (12)
  • [4] Bayesian estimation of chirplet signals by MCMC sampling
    Lin, CC
    Djuric, PM
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3129 - 3132
  • [5] Bayesian estimation of the variance of a jitter using MCMC
    Andrieu, C
    Doucet, A
    Duvaut, P
    8TH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1996, : 24 - 27
  • [6] A Bayesian estimation of building shape using MCMC
    Dick, AR
    Torr, PHS
    Cipolla, R
    COMPUTER VISION - ECCV 2002, PT II, 2002, 2351 : 852 - 866
  • [7] Parallelizing MCMC for Bayesian spatiotemporal geostatistical models
    Jun Yan
    Mary Kathryn Cowles
    Shaowen Wang
    Marc P. Armstrong
    Statistics and Computing, 2007, 17 : 323 - 335
  • [8] Parallelizing MCMC for bayesian spatiotemporal geostatistical models
    Yan, Jun
    Cowles, Mary Kathryn
    Wang, Shaowen
    Armstrong, Marc P.
    STATISTICS AND COMPUTING, 2007, 17 (04) : 323 - 335
  • [9] On the relevance of Bayesian statistics and MCMC for animal models
    de Villemereuil, Pierre
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2019, 136 (05) : 339 - 340
  • [10] HIERARCHICAL BAYESIAN MCMC ESTIMATION OF AIRPORT OPERATIONS COUNTS
    Mott, John H.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 228 - 232