Characterizing breathing dynamics of magnetic skyrmions and antiskyrmions within the Hamiltonian formalism

被引:35
|
作者
McKeever, B. F. [1 ,2 ]
Rodrigues, D. R. [1 ,2 ]
Pinna, D. [1 ]
Abanov, Ar [3 ]
Sinova, Jairo [1 ,4 ]
Everschor-Sitte, K. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[2] Grad Sch Mat Sci Mainz, Staudingerweg 9, D-55128 Mainz, Germany
[3] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[4] Inst Phys ASCR, Vvi, Cukrovarnicka 10, Prague 16200, Czech Republic
关键词
MOTION; STATE; PHASE;
D O I
10.1103/PhysRevB.99.054430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive an effective Hamiltonian system describing the low-energy dynamics of circular magnetic skyrmions and antiskyrmions. Using scaling and symmetry arguments, we model (anti)skyrmion dynamics through a finite set of coupled, canonically conjugated, collective coordinates. The resulting theoretical description is independent of both micromagnetic details as well as any specificity in the ansatz of the skyrmion profile. Based on the Hamiltonian structure, we derive a general description for breathing dynamics of (anti)skyrmions in the limit of radius much larger than the domain wall width. The effective energy landscape reveals two qualitatively different types of breathing behavior. For small energy perturbations, we reproduce the wellknown small breathing mode excitations, where the magnetic moments of the skyrmion oscillate around their equilibrium solution. At higher energies, we find a breathing behavior where the skyrmion phase continuously precesses, transforming Neel to Bloch skyrmions and vice versa. For a damped system, we observe the transition from the continuously rotating and breathing skyrmion into the oscillatory one. We analyze the characteristic frequencies of both breathing types, as well as their amplitudes and distinct energy dissipation rates. For rotational (oscillatory) breathing modes, we predict on average a linear (exponential) decay in energy. We argue that this stark difference in dissipative behavior should be observable in the frequency spectrum of excited (anti)skyrmions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Magnetic field gradient driven dynamics of isolated skyrmions and antiskyrmions in frustrated magnets
    Liang, J. J.
    Yu, J. H.
    Chen, J.
    Qin, M. H.
    Zeng, M.
    Lu, X. B.
    Gao, X. S.
    Liu, J-M
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [2] Generation and annihilation of skyrmions and antiskyrmions in magnetic heterostructures
    Koraltan, Sabri
    Abert, Claas
    Bruckner, Florian
    Heigl, Michael
    Albrecht, Manfred
    Suess, Dieter
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [3] Antiskyrmions and Bloch skyrmions in magnetic Dresselhaus metals
    Kathyat, Deepak S.
    Mukherjee, Arnob
    Kumar, Sanjeev
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [4] Creating arbitrary sequences of mobile magnetic skyrmions and antiskyrmions
    Siegl, Pia
    Stier, Martin
    Schaeffer, Alexander F.
    Vedmedenko, Elena Y.
    Posske, Thore
    Wiesendanger, Roland
    Thorwart, Michael
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [5] Dynamics of "Breathing" Skyrmions
    Lobanov, I. S.
    Uzdin, V. M.
    JETP LETTERS, 2024, 119 (10) : 768 - 774
  • [6] Comparing dynamics, pinning and ratchet effects for skyrmionium, skyrmions, and antiskyrmions
    Souza, J. C. Bellizotti
    Vizarim, N. P.
    Reichhardt, C. J. O.
    Reichhardt, C.
    Venegas, P. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (16)
  • [7] In-situ L-TEM observations of dynamics of nanometric skyrmions and antiskyrmions
    Peng, Licong
    Yasin, Fehmi Sami
    Karube, Kosuke
    Kanazawa, Naoya
    Taguchi, Yasujiro
    Tokura, Yoshinori
    Yu, Xiuzhen
    NANO TODAY, 2025, 62
  • [8] Hamiltonian formalism in bubble dynamics
    Maksimov, Alexey O.
    NONLINEAR ACOUSTICS FUNDAMENTALS AND APPLICATIONS, 2008, 1022 : 58 - 61
  • [9] The Hamiltonian formalism in fluid dynamics
    Antoniou, I
    Pronko, GP
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 141 (03) : 1670 - 1685
  • [10] The Hamiltonian Formalism in Fluid Dynamics
    I. Antoniou
    G. P. Pronko
    Theoretical and Mathematical Physics, 2004, 141 : 1670 - 1685