An intrusion detection framework for energy constrained IoT devices

被引:58
|
作者
Arshad, Junaid [1 ]
Azad, Muhammad Ajmal [2 ]
Abdeltaif, Muhammad Mahmoud [3 ]
Salah, Khaled [4 ]
机构
[1] Univ West London, Sch Comp & Engn, London, England
[2] Univ Derby, Dept Comp Sci & Math, Derby, England
[3] British Univ Egypt, Fac Engn, Elect Engn Dept, Cairo, Egypt
[4] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
关键词
Internet of Things (loT); Industrial loT; Intrusion detection; Constrained loT devices; Performance evaluation; LIGHTWEIGHT; EFFICIENT; INTERNET;
D O I
10.1016/j.ymssp.2019.106436
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Industrial Internet of Things (IIoT) exemplifies IoT with applications in manufacturing, surveillance, automotive, smart buildings, homes and transport. It leverages sensor technology, cutting edge communication and data analytics technologies and the open Internet to consolidate IT and operational technology (OT) aiming to achieve cost and performance benefits. However, the underlying resource constraints and ad hoc nature of such systems have significant implications especially in achieving effective intrusion detection. Consequently, contemporary solutions requiring a stable infrastructure and extensive computational resources are inadequate to fulfill these characteristics of an IIoT system. In this paper, we propose an intrusion detection framework for the energy-constrained loT devices which form the foundation of an IIoT ecosystem. In view of the ad hoc nature of such systems as well as emerging complex threats such as botnets, we assess the feasibility of collaboration between the host (IoT devices) and the edge devices for effective intrusion detection whilst minimizing energy consumption and communication overhead. We implemented the proposed framework with Contiki operating system and conducted rigorous evaluation to identify potential performance trade-offs. The evaluation results demonstrate that the proposed framework can minimize energy and communication overheads whilst achieving an effective collaborative intrusion detection for IIoT systems. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Intrusion Detection Framework in IoT Networks
    Bajpai S.
    Sharma K.
    Chaurasia B.K.
    SN Computer Science, 4 (4)
  • [2] Towards Ensemble Feature Selection for Lightweight Intrusion Detection in Resource-Constrained IoT Devices
    Fatima, Mahawish
    Rehman, Osama
    Rahman, Ibrahim M. H.
    Ajmal, Aisha
    Park, Simon Jigwan
    FUTURE INTERNET, 2024, 16 (10)
  • [3] EC-IoT: An Easy Configuration Framework for Constrained IoT Devices
    Dalipi, Enri
    Van den Abeele, Floris
    Ishaq, Isam
    Moerman, Ingrid
    Hoebeke, Jeroen
    2016 IEEE 3RD WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2016, : 159 - 164
  • [4] FireDL: A novel framework for fire detection and localization suitable for memory constrained IoT devices
    Verma P.
    Bakthula R.
    Multimedia Tools and Applications, 2024, 83 (18) : 54591 - 54614
  • [5] Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices
    Jouhari, Mohammed
    Guizani, Mohsen
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1558 - 1563
  • [6] Active Intrusion Detection with Periodical Probing for IoT Devices
    Yamamoto, Ryo
    Ohtani, Takahiro
    Ohzahata, Satoshi
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [7] Edge-Based Intrusion Detection for IoT devices
    Mudgerikar, Anand
    Sharma, Puneet
    Bertino, Elisa
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2020, 11 (04)
  • [8] A Hybrid Intrusion Detection System for IoT Applications with Constrained Resources
    Wu, Chao
    Liu, Yuan'an
    Wu, Fan
    Liu, Feng
    Lu, Hui
    Fan, Wenhao
    Tang, Bihua
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2020, 12 (01) : 109 - 130
  • [9] A novel intrusion detection framework for optimizing IoT security
    Qaddos, Abdul
    Yaseen, Muhammad Usman
    Al-Shamayleh, Ahmad Sami
    Imran, Muhammad
    Akhunzada, Adnan
    Alharthi, Salman Z.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] An IoT Environment Based Framework for Intelligent Intrusion Detection
    Safwan, Hamza
    Iqbal, Zeshan
    Amin, Rashid
    Khan, Muhammad Attique
    Alhaisoni, Majed
    Alqahtani, Abdullah
    Kim, Ye Jin
    Chang, Byoungchol
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 2365 - 2381