MatrixQCvis: shiny-based interactive data quality exploration for omics data

被引:4
|
作者
Naake, Thomas [1 ]
Huber, Wolfgang [1 ]
机构
[1] European Mol Biol Lab, Genome Biol Unit, D-69117 Heidelberg, Germany
关键词
D O I
10.1093/bioinformatics/btab748
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: First-line data quality assessment and exploratory data analysis are integral parts of any data analysis workflow. In high-throughput quantitative omics experiments (e.g. transcriptomics, proteomics and metabolomics), after initial processing, the data are typically presented as a matrix of numbers (feature IDs x samples). Efficient and standardized data quality metrics calculation and visualization are key to track the within-experiment quality of these rectangular data types and to guarantee for high-quality datasets and subsequent biological question-driven inference. Results: We present MatrixQCvis, which provides interactive visualization of data quality metrics at the per-sample and per-feature level using R's shiny framework. It provides efficient and standardized ways to analyze data quality of quantitative omics data types that come in a matrix-like format (features IDs x samples). MatrixQCvis builds upon the Bioconductor SummarizedExperiment S4 class and thus facilitates the integration into existing workflows.
引用
收藏
页码:1181 / 1182
页数:2
相关论文
共 50 条
  • [1] ChroKit: a Shiny-based framework for interactive analysis, visualization and integration of genomic data
    Croci, Ottavio
    Campaner, Stefano
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (W1) : W83 - W92
  • [2] Interactive Exploration and Quality Control of NONMEM Data Using R Shiny
    Wang, Nina X.
    Liu, Qi
    Lu, Tong
    Miles, Dale
    Vadhavkar, Shweta
    Agarwal, Priya
    Jin, Jin
    Li, Xiaobin
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2016, 43 : S72 - S73
  • [3] The Omics Dashboard for Interactive Exploration of Metabolomics and Multi-Omics Data
    Paley, Suzanne
    Karp, Peter D.
    [J]. METABOLITES, 2024, 14 (01)
  • [4] The Omics Dashboard for interactive exploration of gene-expression data
    Paley, Suzanne
    Parker, Karen
    Spaulding, Aaron
    Tomb, Jean-Francois
    O'Maille, Paul
    Karp, Peter D.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (21) : 12113 - 12124
  • [5] OmicsTIDE: interactive exploration of trends in multi-omics data
    Harbig, Theresa A.
    Fratte, Julian
    Krone, Michael
    Nieselt, Kay
    [J]. BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [6] Improving pharmacometrics analysis efficiency using DataCheQC: An interactive, Shiny-based app for quality control of pharmacometrics datasets
    Dotan, Or
    Radivojevic, Andrijana
    Singh, Rajendra
    [J]. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2023, 12 (10): : 1375 - 1385
  • [7] An R Shiny-based, Interactive Visualization Tool to Exploit Clinical Trial and Real World Data: Application to Acid Sphingomyelinase Deficiency and Olipudase Alfa ERT
    Watson, Shayne
    Kaddi, Chanchala
    Williams, Jason
    Ribes, Edouard
    Barrett, Jeffrey S.
    Azer, Karim
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2016, 43 : S116 - S116
  • [8] TCC-GUI: a Shiny-based application for differential expression analysis of RNA-Seq count data
    Wei Su
    Jianqiang Sun
    Kentaro Shimizu
    Koji Kadota
    [J]. BMC Research Notes, 12
  • [9] Interactive web-based data visualization with R, plotly, and shiny
    Shalabh
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2021, 184 (03) : 1150 - 1150
  • [10] GGplot-Shiny: A Shiny App That Facilitates Data Manipulation And Exploration
    Mouksassi, Mohamad-Samer
    Pastoor, Devin
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2015, 42 : S70 - S70