A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains

被引:23
|
作者
Costa, DG [1 ]
Ding, ZH
Neuberger, JM
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
[2] No Arizona Univ, Dept Math, Flagstaff, AZ 86004 USA
关键词
superlinear elliptic equation; sign-changing solution; modified mountain pass algorithm; high-linking algorithm; finite element method;
D O I
10.1016/S0377-0427(00)00266-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate numerically sign-changing solutions of superlinear elliptic equations on symmetric domains. Based upon the symmetric criticality principle of Palais, the existence of sign-changing solutions which reflect the symmetry of Omega is studied first. A simple numerical algorithm, the modified mountain pass algorithm, is then proposed to compute the sign-changing solutions. This algorithm is discussed and compared with the high-linking algorithm for sign-changing solutions developed by Ding et al. [Nonlinear Anal. 37(1999) 151-172]. By implementing both algorithms on several numerical examples, the sign-changing solutions and their nodal curves are displayed and discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:299 / 319
页数:21
相关论文
共 50 条
  • [1] Sign-Changing Solutions for Resonant and Superlinear Nonhomogeneous Elliptic Equations
    He, Tieshan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [2] Sign-Changing Solutions for Resonant and Superlinear Nonhomogeneous Elliptic Equations
    Tieshan He
    Mediterranean Journal of Mathematics, 2021, 18
  • [3] EXISTENCE AND NONEXISTENCE OF SIGN-CHANGING SOLUTIONS FOR SINGULAR SUPERLINEAR EQUATIONS ON EXTERIOR DOMAINS
    Iaia, Joseph
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (11) : 3218 - 3232
  • [4] Sign-Changing Solutions to Equations of Elliptic
    Zou, Wenming
    Bartsch, Thomas
    Hirano, Norimichi
    Schechter, Martin
    Wang, Zhi-Qiang
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [5] Multiple sign-changing solutions for superlinear (p, q)-equations in symmetrical expanding domains
    Liu, Wulong
    Dai, Guowei
    Winkert, Patrick
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [6] Sign-changing solutions of nonlinear elliptic equations
    Liu, Zhaoli
    Wang, Zhi-Qiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (02) : 221 - 238
  • [7] Sign-changing solutions of nonlinear elliptic equations
    Zhaoli Liu
    Zhi-Qiang Wang
    Frontiers of Mathematics in China, 2008, 3 : 221 - 238
  • [8] Multiple positive solutions of superlinear elliptic problems with sign-changing weight
    Bonheure, D
    Gomes, JM
    Habets, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (01) : 36 - 64
  • [9] Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations
    Alves, Claudianor O.
    Goncalves, Jose V. A.
    Silva, Kaye O.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2601 - 2623
  • [10] Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations
    Claudianor O. Alves
    Jose V. A. Goncalves
    Kaye O. Silva
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2601 - 2623