LAKE SHRINKAGE ANALYSIS USING SPECTRAL-SPATIAL COUPLED REMOTE SENSING ON TIBETAN PLATEAU

被引:4
|
作者
Qiao, Cheng [1 ]
Luo, Jiancheng [1 ]
Sheng, Yongwei [2 ]
Shen, Zhanfeng [1 ]
Li, Junli [3 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
[2] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA
[3] Chinese Acad Sci, Xinjiang Ecol & Geog Inst, Urumqi 830011, Peoples R China
基金
中国国家自然科学基金;
关键词
Tibetan Plateau; remote sensing; lake extraction; shoreline detection;
D O I
10.1109/IGARSS.2010.5653706
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Tibetan Plateau is a typical study area of global environmental change, and lake is an important ecological factor to reveal eco-environmental evolution. Using remote sensing technology to monitor the succession law of lakes on the plateau is of great significance to global environment change research. Based on water index computed by spectral feature fitting (SFF) method, this paper uses "whole-local" spatial scale transformation mechanism, along with iterative algorithm, to obtain high-precise extraction of modern lakes on the Tibetan Plateau. Moreover, uses integrated data of LANDSAT ETM+ images and SRTM data to further detect and recover paleo shorelines. By comparing paleo and modern lakes, it shows that lakes on the Tibetan Plateau have shrunk significantly since the great lake period, which provides fundamental information support to researches on global paleo-climatology and paleo-hydrology change.
引用
收藏
页码:926 / 929
页数:4
相关论文
共 50 条
  • [1] LOCAL SPECTRAL-SPATIAL CLUSTERING FOR REMOTE SENSING IMAGERY
    Ma, Ailong
    Zhong, Yanfei
    Jiao, Hongzan
    Zhang, Liangpei
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5130 - 5133
  • [2] HIGH-PRECISE WATER EXTRACTION BASED ON SPECTRAL-SPATIAL COUPLED REMOTE SENSING INFORMATION
    Luo, Jiancheng
    Sheng, Yongwei
    Shen, Zhanfeng
    Li, Junli
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2840 - 2843
  • [3] A spectral-spatial classification algorithm for multispectral remote sensing data
    Karakahya, H
    Yazgan, B
    Ersoy, OK
    [J]. ARTIFICAIL NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING - ICAN/ICONIP 2003, 2003, 2714 : 1011 - 1017
  • [4] Remote Sensing Image Classification Using the Spectral-Spatial Distance Based on Information Content
    Chen, Siya
    Zhang, Hongyan
    Sun, Tieli
    Zhao, Jianjun
    Guo, Xiaoyi
    [J]. SENSORS, 2018, 18 (10)
  • [5] A robust spectral-spatial approach to identifying heterogeneous crops using remote sensing imagery with high spectral and spatial resolutions
    Zhao, Ji
    Zhong, Yanfei
    Hu, Xin
    Wei, Lifei
    Zhang, Liangpei
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 239 (239)
  • [6] Automatic identification of the lake area at Qinghai-Tibetan Plateau using remote sensing images
    Liu, Zhaofei
    Yao, Zhijun
    Wang, Rui
    [J]. QUATERNARY INTERNATIONAL, 2019, 503 : 136 - 145
  • [7] Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images
    Zhang, Hongyan
    Zhai, Han
    Zhang, Liangpei
    Li, Pingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3672 - 3684
  • [8] Pansharpening Based on Spectral-Spatial Dependence for Multibands Remote Sensing Images
    Wu, Lei
    Jiang, Xunyan
    [J]. IEEE ACCESS, 2022, 10 : 76153 - 76167
  • [9] An Improved Spectral-Spatial Classification Framework for Hyperspectral Remote Sensing Images
    Chen, Zhao
    Wang, Bin
    [J]. 2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 532 - 536
  • [10] Lake ice phenology of the Nam Co at Tibetan Plateau: Remote sensing and modelling
    Wu Y.
    Guo L.
    Fan L.
    Wen M.
    Chi H.
    Zhang B.
    [J]. National Remote Sensing Bulletin, 2022, 26 (01) : 193 - 200