Automated Selection of the Computational Parameters for the Higher-Order Parabolic Equation Numerical Methods

被引:8
|
作者
Lytaev, Mikhail S. [1 ]
机构
[1] Russian Acad Sci, St Petersburg Inst Informat & Automat, 14th Linia,6,39, St Petersburg 199178, Russia
关键词
Parabolic equation; Dispersion analysis; Wave propagation; Computational parameter; Pade approximant; Finite-difference approximation; BOUNDARY-CONDITIONS; ONE-WAY; APPROXIMATIONS; PROPAGATION; SCHRODINGER; DEPTH;
D O I
10.1007/978-3-030-58799-4_22
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study is devoted to the features of the numerical methods for the parabolic wave equation. While seeking a numerical solution, it is necessary to select a set of computational parameters of the numerical method. The choice of the computational parameters affects the speed and accuracy of the calculations. Automation of the choice of computational parameters is useful when applying mentioned numerical methods in complex software systems, where the user cannot select them manually. In this paper, we consider a finite-difference split-step Pade method for the one-way Helmholtz equation. A discrete dispersion relation based algorithm for finding the optimal computational parameters of the numerical method is presented.
引用
收藏
页码:296 / 311
页数:16
相关论文
共 50 条
  • [1] Computational Grid Optimization for the 3D Higher-Order Parabolic Equation
    Lytaev, Mikhail S.
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2023, PT I, 2023, 13956 : 170 - 185
  • [2] Numerical stability of higher-order derivative methods for the pantograph equation
    Lv, Wanjin
    Li, Hui
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5739 - 5745
  • [3] A HIGHER-ORDER PARABOLIC WAVE-EQUATION
    KNIGHTLY, GH
    LEE, D
    STMARY, DF
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1987, 82 (02): : 580 - 587
  • [4] An inverse problem for a higher-order parabolic equation
    Kamynin, VL
    Franchini, E
    [J]. MATHEMATICAL NOTES, 1998, 64 (5-6) : 590 - 599
  • [5] An inverse problem for a higher-order parabolic equation
    V. L. Kamynin
    E. Franchini
    [J]. Mathematical Notes, 1998, 64 : 590 - 599
  • [6] A SURVEY OF HIGHER-ORDER METHODS FOR THE NUMERICAL-INTEGRATION OF SEMIDISCRETE PARABOLIC PROBLEMS
    SEWARD, WL
    FAIRWEATHER, G
    JOHNSTON, RL
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (04) : 375 - 425
  • [7] Higher-order generalized-α methods for parabolic problems
    Behnoudfar, Pouria
    Deng, Quanling
    Calo, Victor M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (13)
  • [8] Cauchy problem for a parabolic higher-order equation with pulse action
    Luchko V.M.
    [J]. Journal of Mathematical Sciences, 2009, 160 (3) : 296 - 307
  • [9] Regularity of the solution of the Cauchy problem for a higher-order parabolic equation
    Cherepova, M. F.
    [J]. DIFFERENTIAL EQUATIONS, 2010, 46 (04) : 543 - 552
  • [10] A Higher-Order Non-autonomous Semilinear Parabolic Equation
    Belluzi, Maykel
    Bezerra, Flank D. M.
    Nascimento, Marcelo J. D.
    Santos, Lucas A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (01):