Improving Multiset Canonical Correlation Analysis in High Dimensional Sample Deficient Settings

被引:0
|
作者
Asendorf, Nicholas [1 ]
Nadakuditi, Raj Rao [1 ]
机构
[1] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48105 USA
关键词
SETS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of inferring and learning latent correlations present in multiple noisy matrix-valued datasets using multiset canonical correlation analysis (MCCA). We show that empirical MCCA will provably fail to infer the presence of latent correlations when the sample size is less than a threshold that is completely specified by the dimensionality of the datasets. For the setting where the individual noisy data matrices are structured as low-rank-plus-noise, we propose a simple modification of MCCA, which we label Informative MCCA (IMCCA). We show, on both synthetic and real-world datasets, that IMCCA reliably infers and learns latent correlations.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 50 条
  • [1] Stable Algorithms for Multiset Canonical Correlation Analysis
    Hasan, Mohammed A.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 1280 - 1285
  • [2] Complete Model Selection in Multiset Canonical Correlation Analysis
    Marrinan, Tim
    Hasija, Tanuj
    Lameiro, Christian
    Schreier, Peter J.
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1082 - 1086
  • [3] Canonical correlation analysis of high-dimensional data with very small sample support
    Song, Yang
    Schreier, Peter J.
    Ramirez, David
    Hasija, Tanuj
    SIGNAL PROCESSING, 2016, 128 : 449 - 458
  • [4] Joint Blind Source Separation by Multiset Canonical Correlation Analysis
    Li, Yi-Ou
    Adali, Tuelay
    Wang, Wei
    Calhoun, Vince D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (10) : 3918 - 3929
  • [5] Multiset Canonical Correlation Analysis Using for Blind Source Separation
    Yu, Huagang
    Huang, Gaoming
    Gao, Jun
    MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2012, 195-196 : 104 - 108
  • [6] Functional Brain Networks and Schizophrenia analysis with fMRI by Multiset Canonical Correlation Analysis
    Guccione, Pietro
    Mascolo, Luigi
    Nico, Giovanni
    Taurisano, Paolo
    Blasi, Giuseppe
    Fazio, Leonardo
    Bertolino, Alessandro
    2013 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ABME 2013), 2013, : 207 - 210
  • [7] Specific radar emitter identification using multiset canonical correlation analysis
    Wang, L. (leiwang@mail.xidian.edu.cn), 1600, Science Press (40):
  • [8] Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis
    Deleus, Filip
    Van Hulle, Marc M.
    JOURNAL OF NEUROSCIENCE METHODS, 2011, 197 (01) : 143 - 157
  • [9] Multiple moving sources passive location based on multiset canonical correlation analysis
    禹华钢
    Huang Gaoming
    Gao Jun
    HighTechnologyLetters, 2013, 19 (02) : 197 - 202
  • [10] Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
    Yi-Ou Li
    Tom Eichele
    Vince D. Calhoun
    Tulay Adali
    Journal of Signal Processing Systems, 2012, 68 : 31 - 48