A numerical method for the distributed order time-fractional diffusion equation

被引:0
|
作者
Ford, Neville J. [1 ]
Morgado, M. Luisa [2 ]
Rebelo, Magda [3 ,4 ]
机构
[1] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[2] UTAD, Dept Math, CM, P-5001801 Vila Real, Portugal
[3] Univ Nova Lisboa, FCT, CEMAT IST, P-2829516 Caparica, Portugal
[4] Univ Nova Lisboa, FCT, Dept Math, P-2829516 Caparica, Portugal
关键词
FINITE-DIFFERENCE METHODS; STABILITY; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the numerical approximation of the diffusion equation with distributed order in time. A numerical method is proposed in the case where the order of the time derivative is distributed over the interval [0, 1], and results concerning the stability and convergence of that scheme are provided. Two numerical examples are presented illustrating the theoretical numerical results.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability
    Derakhshan, Mohammad Hossein
    Rezaei, Hamid
    Marasi, Hamid Reza
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 214 : 315 - 333
  • [2] HIGH-ORDER NUMERICAL METHOD FOR SOLVING A SPACE DISTRIBUTED-ORDER TIME-FRACTIONAL DIFFUSION EQUATION
    李景
    杨莹莹
    姜英军
    封利波
    郭柏灵
    [J]. Acta Mathematica Scientia, 2021, 41 (03) : 801 - 826
  • [3] High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation
    Li, Jing
    Yang, Yingying
    Jiang, Yingjun
    Feng, Libo
    Guo, Boling
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 801 - 826
  • [4] High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation
    Jing Li
    Yingying Yang
    Yingjun Jiang
    Libo Feng
    Boling Guo
    [J]. Acta Mathematica Scientia, 2021, 41 : 801 - 826
  • [5] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [6] Time-fractional diffusion of distributed order
    Mainardi, Francesco
    Mura, Antonio
    Pagnini, Gianni
    Gorenflo, Rudolf
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1267 - 1290
  • [7] An efficient numerical method for the distributed-order time-fractional diffusion equation with the error analysis and stability properties
    Irandoust-Pakchin, Safar
    Hossein Derakhshan, Mohammad
    Rezapour, Shahram
    Adel, Mohamed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [8] An inverse source problem for distributed order time-fractional diffusion equation
    Sun, Chunlong
    Liu, Jijun
    [J]. INVERSE PROBLEMS, 2020, 36 (05)
  • [9] A FAST HIGH ORDER METHOD FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Zhu, Hongyi
    Xu, Chuanju
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2829 - 2849
  • [10] On the time-fractional Cattaneo equation of distributed order
    Awad, Emad
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 518 : 210 - 233