Monitoring a Reverse Osmosis Process with Kernel Principal Component Analysis: A Preliminary Approach

被引:1
|
作者
Quatrini, Elena [1 ]
Costantino, Francesco [1 ]
Mba, David [2 ]
Li, Xiaochuan [2 ]
Gan, Tat-Hean [3 ]
机构
[1] Sapienza Univ Rome, Dept Mech & Aerosp Engn, Via Eudossiana 18, I-00184 Rome, Italy
[2] De Montfort Univ, Fac Comp Engn & Media, Leicester LE1 9BH, Leics, England
[3] Brunel Univ London, Coll Engn Design & Phys Sci, Kingston Lane, Uxbridge UB8 3PH, Middx, England
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 14期
关键词
kernel principal component analysis; nonlinear system; pharmaceutical process; fault detection; condition-based maintenance; FAULT-DETECTION; WATER;
D O I
10.3390/app11146370
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The water purification process is becoming increasingly important to ensure the continuity and quality of subsequent production processes, and it is particularly relevant in pharmaceutical contexts. However, in this context, the difficulties arising during the monitoring process are manifold. On the one hand, the monitoring process reveals various discontinuities due to different characteristics of the input water. On the other hand, the monitoring process is discontinuous and random itself, thus not guaranteeing continuity of the parameters and hindering a straightforward analysis. Consequently, further research on water purification processes is paramount to identify the most suitable techniques able to guarantee good performance. Against this background, this paper proposes an application of kernel principal component analysis for fault detection in a process with the above-mentioned characteristics. Based on the temporal variability of the process, the paper suggests the use of past and future matrices as input for fault detection as an alternative to the original dataset. In this manner, the temporal correlation between process parameters and machine health is accounted for. The proposed approach confirms the possibility of obtaining very good monitoring results in the analyzed context.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Sparse Kernel Principal Component Analysis via Sequential Approach for Nonlinear Process Monitoring
    Guo, Lingling
    Wu, Ping
    Gao, Jinfeng
    Lou, Siwei
    [J]. IEEE ACCESS, 2019, 7 : 47550 - 47563
  • [2] Monitoring of SBR process using kernel principal component analysis
    Fan, Liping
    Yu, Haibin
    Yuan, Decheng
    Xu, Yang
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2006, 27 (03): : 249 - 253
  • [3] Online reduced kernel principal component analysis for process monitoring
    Fezai, Radhia
    Mansouri, Majdi
    Taouali, Okba
    Harkat, Mohamed Faouzi
    Bouguila, Nasreddine
    [J]. JOURNAL OF PROCESS CONTROL, 2018, 61 : 1 - 11
  • [4] Nonlinear process monitoring using kernel principal component analysis
    Lee, JM
    Yoo, CK
    Choi, SW
    Vanrolleghem, PA
    Lee, IB
    [J]. CHEMICAL ENGINEERING SCIENCE, 2004, 59 (01) : 223 - 234
  • [5] Monitoring and Fault Detection in a Reverse Osmosis Plant using Principal Component Analysis
    Garcia-Alvarez, D.
    Fuente, M. J.
    Palacin, L. G.
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 3044 - 3049
  • [6] Adaptive Process Monitoring of Online Reduced Kernel Principal Component Analysis
    Guo J.
    Li W.
    Li Y.
    [J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (10): : 1397 - 1408
  • [7] Ensemble Kernel Principal Component Analysis for Improved Nonlinear Process Monitoring
    Li, Nan
    Yang, Yupu
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (01) : 318 - 329
  • [8] Monitoring of a machining process using kernel principal component analysis and kernel density estimation
    Wo Jae Lee
    Gamini P. Mendis
    Matthew J. Triebe
    John W. Sutherland
    [J]. Journal of Intelligent Manufacturing, 2020, 31 : 1175 - 1189
  • [9] Block adaptive kernel principal component analysis for nonlinear process monitoring
    Xie, Lei
    Li, Zhe
    Zeng, Jiusun
    Kruger, Uwe
    [J]. AICHE JOURNAL, 2016, 62 (12) : 4334 - 4345
  • [10] Fault identification for process monitoring using kernel principal component analysis
    Cho, JH
    Lee, JM
    Choi, SW
    Lee, D
    Lee, IB
    [J]. CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) : 279 - 288