A hierarchical mixture model for gene expression data

被引:1
|
作者
Scaccia, L [1 ]
Bartolucci, F [1 ]
机构
[1] Univ Perugia, Dipartimento Sci Stat, I-06100 Perugia, Italy
关键词
D O I
10.1007/3-540-27373-5_32
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We illustrate the use of a mixture of multivariate Normal distributions for clustering genes on the basis of Microarray data. We follow a hierarchical Bayesian approach and estimate the parameters of the mixture using Markov chain Monte Carlo (MCMC) techniques. The number of components (groups) is chosen on the basis of the Bayes factor, numerically evaluated using the Chib and Jelaizkov (2001) method. We also show how the proposed approach can be easily applied in recovering missing observations, which generally affect Microarray data sets. An application of the approach for clustering yeast genes according to their temporal profiles is illustrated.
引用
收藏
页码:267 / 274
页数:8
相关论文
共 50 条
  • [1] A full Bayesian hierarchical mixture model for the variance of gene differential expression
    Samuel OM Manda
    Rebecca E Walls
    Mark S Gilthorpe
    [J]. BMC Bioinformatics, 8
  • [2] A full Bayesian hierarchical mixture model for the variance of gene differential expression
    Manda, Samuel O. M.
    Walls, Rebecca E.
    Gilthorpe, Mark S.
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [3] A Bayesian mixture model for partitioning gene expression data
    Zhou, Chuan
    Wakefield, Jon
    [J]. BIOMETRICS, 2006, 62 (02) : 515 - 525
  • [4] Hierarchical Bayesian model for analysis of gene expression data
    Rekaya, R.
    Zhang, W.
    [J]. JOURNAL OF DAIRY SCIENCE, 2005, 88 : 104 - 105
  • [5] Hierarchical Bayesian model for analysis of gene expression data
    Rekaya, R.
    Zhang, W.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2005, 83 : 104 - 105
  • [6] Analysis of Microarray Gene Expression Data Using a Mixture Model
    Bartolucci, Al
    Allison, David B.
    Bae, Sejong
    Singh, Karan P.
    [J]. MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 2867 - 2869
  • [7] A mixture model approach for the analysis of microarray gene expression data
    Allison, David B.
    Gadbury, Gary L.
    Heo, Moonseong
    Fernández, José R.
    Lee, Cheol-Koo
    Prolla, Tomas A.
    Weindruch, Richard
    [J]. Computational Statistics and Data Analysis, 2002, 38 (05): : 1 - 20
  • [8] A mixture model approach for the analysis of microarray gene expression data
    Allison, DB
    Gadbury, GL
    Heo, MS
    Fernández, JR
    Lee, CK
    Prolla, TA
    Weindruch, R
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) : 1 - 20
  • [9] Mixture model on the variance for the differential analysis of gene expression data
    Delmar, P
    Robin, S
    Tronik-Le Roux, D
    Daudin, JJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 : 31 - 50
  • [10] Bayesian hierarchical error model for analysis of gene expression data
    Cho, H
    Lee, JK
    [J]. BIOINFORMATICS, 2004, 20 (13) : 2016 - 2025