The heights of irreducible Brauer characters in 2-blocks of the symmetric groups

被引:2
|
作者
Kiyota, Masao [2 ]
Okuyama, Tetsuro [3 ]
Wada, Tomoyuki [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Math, Koganei, Tokyo 1848588, Japan
[2] Tokyo Med & Dent Univ, Coll Liberal Arts & Sci, Ichikawa, Chiba 2720827, Japan
[3] Hokkaido Univ, Math Lab, Asahikawa, Hokkaido 0700825, Japan
关键词
Symmetric group; 2-Block; Height; Green correspondence; Decomposition number; Cartan matrix; Eigenvalue; CARTAN-MATRICES; BLOCKS; EQUIVALENCES; EIGENVALUES; VERTICES;
D O I
10.1016/j.jalgebra.2012.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exists a unique irreducible Brauer character of height zero in any 2-blocks of the symmetric group. This generalizes the theorem of P. Fong and G.D. James that the dimension of every non-trivial 2-modular simple module of the symmetric group is even. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 344
页数:16
相关论文
共 50 条