A fast Fourier-Galerkin method for solving singular boundary integral equations

被引:29
|
作者
Cai, Haotao [2 ,3 ]
Xu, Yuesheng [1 ,2 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Shandong Univ, Dept Math & Stat, Jinan 250002, Peoples R China
关键词
singular boundary integral equations; Fourier-Galerkin methods; fast solutions;
D O I
10.1137/070703478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose in this paper a convenient way to compress the dense matrix representation of a compact integral operator with a smooth kernel under the Fourier basis. The compression leads to a sparse matrix with only O(n log n) nonzero entries, where 2n or 2n + 1 denotes the order of the matrix. Based on this compression strategy, we develop a fast Fourier-Galerkin method for solving a class of singular boundary integral equations. We prove that the fast Fourier-Galerkin method gives the optimal convergence order O( n(-t)), where t denotes the degree of regularity of the exact solution. Moreover, we design a fast scheme for solving the corresponding truncated linear system. We show that solving this system requires only an O( n log(2) n) number of multiplications. We present numerical examples to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed algorithm.
引用
收藏
页码:1965 / 1984
页数:20
相关论文
共 50 条
  • [1] Fast Fourier-Galerkin methods for solving singular boundary integral equations: Numerical integration and precondition
    Jiang, Ying
    Xu, Yuesheng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) : 2792 - 2807
  • [2] A fast Fourier-Galerkin method for solving integral equations of second kind with weakly singular kernels
    Cai H.
    [J]. Journal of Applied Mathematics and Computing, 2010, 32 (02) : 405 - 415
  • [3] A fast Fourier-Galerkin method solving boundary integral equations for the Helmholtz equation with exponential convergence
    Jiang, Ying
    Wang, Bo
    Yu, Dandan
    [J]. NUMERICAL ALGORITHMS, 2021, 88 (03) : 1457 - 1491
  • [4] A fast Fourier-Galerkin method solving boundary integral equations for the Helmholtz equation with exponential convergence
    Ying Jiang
    Bo Wang
    Dandan Yu
    [J]. Numerical Algorithms, 2021, 88 : 1457 - 1491
  • [5] A FAST FOURIER-GALERKIN METHOD SOLVING A SYSTEM OF INTEGRAL EQUATIONS FOR THE BIHARMONIC EQUATION
    Wang, Bo
    Yu, Dandan
    Tan, Bao
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2021, 33 (04) : 511 - 530
  • [6] A FAST FOURIER-GALERKIN METHOD SOLVING A BOUNDARY INTEGRAL EQUATION FOR THE BIHARMONIC EQUATION
    Jiang, Ying
    Wang, Bo
    Xu, Yuesheng
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2530 - 2554
  • [7] Fast Fourier-Galerkin Methods for Nonlinear Boundary Integral Equations
    Chen, Xiangling
    Wang, Rui
    Xu, Yuesheng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (03) : 494 - 514
  • [8] Fast Fourier-Galerkin Methods for Nonlinear Boundary Integral Equations
    Xiangling Chen
    Rui Wang
    Yuesheng Xu
    [J]. Journal of Scientific Computing, 2013, 56 : 494 - 514
  • [9] A Fully Discrete Fast Fourier-Galerkin Method Solving a Boundary Integral Equation for the Biharmonic Equation
    Jiang, Ying
    Wang, Bo
    Xu, Yuesheng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1594 - 1632
  • [10] Wavelet Galerkin method for solving singular integral equations
    Maleknejad, K.
    Nosrati, M.
    Najafi, E.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (02): : 373 - 390