Spin-orbit interaction and spin selectivity for tunneling electron transfer in DNA

被引:19
|
作者
Varela, Solmar [1 ]
Zambrano, Iskra [2 ]
Berche, Bertrand [3 ]
Mujica, Vladimiro [4 ]
Medina, Ernesto [2 ,5 ]
机构
[1] Yachay Tech Univ, Sch Chem Sci & Engn, Urcuqui 100119, Ecuador
[2] Yachay Tech Univ, Sch Phys Sci & Nanotechnol, Urcuqui 100119, Ecuador
[3] Univ Lorraine, CNRS 7019, Lab Phys & Chim Theor, F-54506 Vandoeuvre Les Nancy, France
[4] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[5] Arizona State Univ, Simon A Levin Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
关键词
TRANSPORT;
D O I
10.1103/PhysRevB.101.241410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electron transfer (ET) in biological molecules, such as peptides and proteins, consists of electrons moving between well-defined localized states (donors to acceptors) through a tunneling process. Here, we present an analytical model for ET by tunneling in DNA in the presence of spin-orbit (SO) interaction to produce a strong spin asymmetry with the intrinsic atomic SO strength in the meV range. We obtain a Hamiltonian consistent with charge transport through pi orbitals on the DNA bases and derive the behavior of ET as a function of the injection state momentum, the spin-orbit coupling, and barrier length and strength. Both tunneling energies, deep below the barrier and close to the barrier height, are considered. A highly consistent scenario arises where two concomitant mechanisms for spin selection arises; spin interference and differential spin amplitude decay. High spin filtering can take place at the cost of reduced amplitude transmission assuming realistic values for the SO coupling. The spin filtering scenario is completed by addressing the spin-dependent torque under the barrier with a consistent conserved definition for the spin current.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Comment on "Spin-orbit interaction and spin selectivity for tunneling electron transfer in DNA"
    Entin-Wohlman, Ora
    Aharony, Amnon
    Utsumi, Yasuhiro
    PHYSICAL REVIEW B, 2021, 103 (07)
  • [2] Josephson tunneling controlled by spin-orbit interaction
    Jonson, M.
    Shekhter, R., I
    Entin-Wohlman, O.
    Aharony, A.
    LOW TEMPERATURE PHYSICS, 2024, 50 (08) : 693 - 699
  • [3] Josephson tunneling controlled by spin-orbit interaction
    Jonson, M.
    Shekhter, R.I.
    Entin-Wohlman, O.
    Aharony, A.
    Fizika Nizkikh Temperatur, 2024, 50 (08): : 770 - 776
  • [4] Minimal model for chirally induced spin selectivity: spin-orbit coupling, tunneling and decoherence
    Mena, Miguel
    Varela, Solmar
    Berche, Bertrand
    Medina, Ernesto
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (08):
  • [5] Spin filtering and spin accumulation in an electron stub waveguide with spin-orbit interaction
    Zhai, Feng
    Xu, H. Q.
    PHYSICAL REVIEW B, 2007, 76 (03)
  • [6] Spin Accumulation with Spin-Orbit Interaction
    Saarikoski, Henri
    Bauer, Gerrit E. W.
    PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [7] Chirality-induced phonon spin selectivity by elastic spin-orbit interaction
    Yang, Chenwen
    Ren, Jie
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (47)
  • [8] Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors
    Nuccio, L.
    Willis, M.
    Schulz, L.
    Fratini, S.
    Messina, F.
    D'Amico, M.
    Pratt, F. L.
    Lord, J. S.
    McKenzie, I.
    Loth, M.
    Purushothaman, B.
    Anthony, J.
    Heeney, M.
    Wilson, R. M.
    Hernandez, I.
    Cannas, M.
    Sedlak, K.
    Kreouzis, T.
    Gillin, W. P.
    Bernhard, C.
    Drew, A. J.
    PHYSICAL REVIEW LETTERS, 2013, 110 (21)
  • [9] Spin current diode based on an electron waveguide with spin-orbit interaction
    Zhai, Feng
    Chang, Kai
    Xu, H. Q.
    APPLIED PHYSICS LETTERS, 2008, 92 (10)
  • [10] Spin rotation for ballistic electron transmission induced by spin-orbit interaction
    Bulgakov, EN
    Sadreev, AF
    PHYSICAL REVIEW B, 2002, 66 (07):