Randomly stopped minima and maxima with exponential-type distributions

被引:5
|
作者
Ragulina, Olena [1 ]
Siaulys, Jonas [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Theory Stat & Actuarial Math, Volodymyrska Str 64, UA-01601 Kiev, Ukraine
[2] Vilnius Univ, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
来源
关键词
class of exponential distributions; counting random variable; randomly stopped maxima; randomly stopped minima; maximum of sums; minimum of sums; closure property; CONVOLUTION EQUIVALENCE; INFINITE-DIVISIBILITY; SUMS; CLOSURE; ASYMPTOTICS; PRINCIPLE; TAIL;
D O I
10.15388/NA.2019.2.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {xi(1), xi(2), . . .} be a sequence of independent real-valued and possibly nonidentically distributed random variables. Suppose that eta is a nonnegative, nondegenerate at 0 and integer-valued random variable, which is independent of {xi(1), xi(2), . . .}. In this paper, we consider conditions for {xi(1), xi(2), . . .} and eta under which the distributions of the randomly stopped maxima and minima, as well as randomly stopped maxima of sums and randomly stopped minima of sums, belong to the class of exponential distributions.
引用
收藏
页码:297 / 313
页数:17
相关论文
共 50 条
  • [1] Randomly stopped sums with exponential-type distributions
    Danilenko, Svetlana
    Markeviciute, Jurgita
    Siaulys, Jonas
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06): : 793 - 807
  • [2] Randomly Stopped Sums, Minima and Maxima for Heavy-Tailed and Light-Tailed Distributions
    Leipus, Remigijus
    Siaulys, Jonas
    Danilenko, Svetlana
    Karaseviciene, Jurate
    [J]. AXIOMS, 2024, 13 (06)
  • [3] ON MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS
    BILDIKAR, S
    PATIL, GP
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (03): : 760 - &
  • [4] MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS
    BILDIKAR, S
    PATIL, GP
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04): : 1316 - &
  • [5] SOME CHARACTERIZATIONS OF DISTRIBUTIONS OF THE EXPONENTIAL-TYPE
    TARGHETTA, ML
    [J]. STATISTICAL PAPERS, 1993, 34 (02) : 175 - 180
  • [6] SOME CHARACTERIZATIONS OF EXPONENTIAL-TYPE DISTRIBUTIONS
    BOLGER, EM
    HARKNESS, WL
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1966, 16 (01) : 5 - &
  • [7] CHARACTERIZATION OF CERTAIN EXPONENTIAL-TYPE DISTRIBUTIONS
    BILDIKAR, S
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1969, 31 (JUN): : 35 - 42
  • [8] Distributions of additive functionals of Brownian motion stopped at moments of maxima and minima of random times
    Vagurina I.V.
    [J]. Journal of Mathematical Sciences, 2005, 128 (1) : 2511 - 2521
  • [9] QUEUES WITH EXPONENTIAL-TYPE SERVICE-TIME DISTRIBUTIONS
    HEALY, TL
    [J]. OPERATIONS RESEARCH, 1960, 8 (05) : 719 - 721
  • [10] Six-parameter exponential-type potential and the identity for the exponential-type potentials
    Jia, CS
    Zeng, XL
    Li, SC
    Sun, LT
    Yang, QB
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (05) : 523 - 530