Optimal selection of genetic variants for adjustment of population stratification in European association studies

被引:2
|
作者
Brinster, Regina [1 ]
Scherer, Dominique [1 ]
Bermejo, Justo Lorenzo [1 ]
机构
[1] Heidelberg Univ, Inst Med Biometry & Informat, Stat Genet Grp, Heidelberg, Germany
关键词
population stratification; principal component analysis; ancestry-informative marker; genome-wide association study; ANCESTRY-INFORMATIVE MARKERS; PRINCIPAL-COMPONENTS; GENOME;
D O I
10.1093/bib/bbz023
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Population stratification is usually corrected relying on principal component analysis (PCA) of genome-wide genotype data, even in populations considered genetically homogeneous, such as Europeans. The need to genotype only a small number of genetic variants that show large differences in allele frequency among subpopulations-so-called ancestry-informative markers (AIMs)-instead of the whole genome for stratification adjustment could represent an advantage for replication studies and candidate gene/pathway studies. Here we compare the correction performance of classical and robust principal components (PCs) with the use of AIMs selected according to four different methods: the informativeness for assignment measure (IN-AIMs), the combination of PCA and F-statistics, PCA-correlated measurement and the PCA weighted loadings for each genetic variant. We used real genotype data from the Population Reference Sample and The Cancer Genome Atlas to simulate European genetic association studies and to quantify type I error rate and statistical power in different case-control settings. In studies with the same numbers of cases and controls per country and control-to-case ratios reflecting actual rates of disease prevalence, no adjustment for population stratification was required. The unnecessary inclusion of the country of origin, PCs or AIMs as covariates in the regression models translated into increasing type I error rates. In studies with cases and controls from separate countries, no investigated method was able to adequately correct for population stratification. The first classical and the first two robust PCs achieved the lowest (although inflated) type I error, followed at some distance by the first eight -AIMs.
引用
收藏
页码:753 / 761
页数:9
相关论文
共 50 条
  • [1] Optimal Selection of Genetic Variants for Adjustment of Population Stratification in European Association Studies
    Brinster, Regina
    Scherer, Dominique
    Bermejo, Justo Lorenzo
    [J]. HUMAN HEREDITY, 2017, 83 (01) : 4 - 4
  • [2] Score-based Adjustment for Confounding by Population Stratification in Genetic Association Studies
    Allen, Andrew
    Epstein, Michael P.
    Satten, Glen A.
    [J]. GENETIC EPIDEMIOLOGY, 2010, 34 (05) : 383 - 385
  • [3] Adjustment for Population Stratification in European Association Studies via Informative Markers of the Principal Ancestry Components
    Brinster, R.
    Scherer, D.
    Bermejo, J. Lorenzo
    [J]. HUMAN HEREDITY, 2015, 80 (03) : 105 - 105
  • [4] Population Stratification in Secondary Genetic Association Studies
    Babron, M. -C
    Benhamou, S.
    Genin, E.
    Kazma, R.
    [J]. HUMAN HEREDITY, 2015, 79 (01) : 30 - 30
  • [5] Adjustment for Population Stratification via Principal Components in Association Analysis of Rare Variants
    Zhang, Yiwei
    Guan, Weihua
    Pan, Wei
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (01) : 99 - 109
  • [6] Determining population stratification and subgroup effects in association studies of rare genetic variants for nicotine dependence
    Hsieh, Ai-Ru
    Chen, Li-Shiun
    Li, Ying-Ju
    Fann, Cathy S. J.
    [J]. PSYCHIATRIC GENETICS, 2019, 29 (04) : 111 - 119
  • [7] Assessing the impact of population stratification on genetic association studies
    Freedman, ML
    Reich, D
    Penney, KL
    McDonald, GJ
    Mignault, AA
    Patterson, N
    Gabriel, SB
    Topol, EJ
    Smoller, JW
    Pato, CN
    Pato, MT
    Petryshen, TYL
    Kolonel, LN
    Lander, ES
    Sklar, P
    Henderson, B
    Hirschhorn, JN
    Altshuler, D
    [J]. NATURE GENETICS, 2004, 36 (04) : 388 - 393
  • [8] Assessing the impact of population stratification on genetic association studies
    Matthew L Freedman
    David Reich
    Kathryn L Penney
    Gavin J McDonald
    Andre A Mignault
    Nick Patterson
    Stacey B Gabriel
    Eric J Topol
    Jordan W Smoller
    Carlos N Pato
    Michele T Pato
    Tracey L Petryshen
    Laurence N Kolonel
    Eric S Lander
    Pamela Sklar
    Brian Henderson
    Joel N Hirschhorn
    David Altshuler
    [J]. Nature Genetics, 2004, 36 : 388 - 393
  • [9] Population stratification confounds genetic association studies among Latinos
    Shweta Choudhry
    Natasha E. Coyle
    Hua Tang
    Keyan Salari
    Denise Lind
    Suzanne L. Clark
    Hui-Ju Tsai
    Mariam Naqvi
    Angie Phong
    Ngim Ung
    Henry Matallana
    Pedro C. Avila
    Jesus Casal
    Alfonso Torres
    Sylvette Nazario
    Richard Castro
    Natalie C. Battle
    Eliseo J. Perez-Stable
    Pui-Yan Kwok
    Dean Sheppard
    Mark D. Shriver
    William Rodriguez-Cintron
    Neil Risch
    Elad Ziv
    Esteban Gonzàlez Burchard
    [J]. Human Genetics, 2006, 118 : 652 - 664
  • [10] Population stratification confounds genetic association studies among Latinos
    Choudhry, S
    Coyle, NE
    Tang, H
    Salari, K
    Lind, D
    Clark, SL
    Tsai, HJ
    Naqvi, M
    Phong, A
    Ung, N
    Matallana, H
    Avila, PC
    Casal, J
    Torres, A
    Nazario, S
    Castro, R
    Battle, NC
    Perez-Stable, EJ
    Kwok, PY
    Sheppard, D
    Shriver, MD
    Rodriguez-Cintron, W
    Risch, N
    Ziv, E
    Burchard, EG
    [J]. HUMAN GENETICS, 2006, 118 (05) : 652 - 664