On the uniqueness problem for continuous convolution semigroups of probability measures on simply connected nilpotent Lie groups

被引:0
|
作者
Neuenschwander, D [1 ]
机构
[1] Univ Lausanne, Ecole Hautes Etud Commerciales, Inst Sci Actuarielles, CH-1015 Lausanne, Switzerland
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1998年 / 53卷 / 3-4期
关键词
poisson semigroups; embedding problem; nilpotent Lie groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected nilpotent Lie group and assume {mu(t)((i))}(t greater than or equal to 0) (i = 1, 2) are Poisson semigroups of probability measures on G with boundedly sup(1) (2)1 then P(1) (2) for all t > 0. ported Levy measures. We prove that if mu(1)((1)) = mu(1)((2)), then mu(t)((1)) = mu(t)((2)) for all t greater than or equal to 0. As a consequence, e.g. a convergent triangular system of rowwise i.i.d. probability measures on G which are concentrated on a fixed circular annulus automatically converges functionally.
引用
收藏
页码:415 / 422
页数:8
相关论文
共 50 条