Filtered Convolution for Synthetic Aperture Radar Images Ship Detection

被引:6
|
作者
Zhang, Luyang [1 ,2 ]
Wang, Haitao [1 ]
Wang, Lingfeng [3 ]
Pan, Chunhong [2 ]
Huo, Chunlei [2 ]
Liu, Qiang [1 ]
Wang, Xinyao [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
关键词
synthetic aperture radar (SAR); remote sensing image ship detection; filter convolution; coherent speckle noise; local weight; SPECKLE; NOISE;
D O I
10.3390/rs14205257
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Synthetic aperture radar (SAR) image ship detection is currently a research hotspot in the field of national defense science and technology. However, SAR images contain a large amount of coherent speckle noise, which poses significant challenges in the task of ship detection. To address this issue, we propose filter convolution, a novel design that replaces the traditional convolution layer and suppresses coherent speckle noise while extracting features. Specifically, the convolution kernel of the filter convolution comes from the input and is generated by two modules: the kernel-generation module and local weight generation module. The kernel-generation module is a dynamic structure that generates dynamic convolution kernels using input image or feature information. The local weight generation module is based on the statistical characteristics of the input images or features and is used to generate local weights. The introduction of local weights allows the extracted features to contain more local characteristic information, which is conducive to ship detection in SAR images. In addition, we proved that the fusion of the proposed kernel-generation module and the local weight module can suppress coherent speckle noise in the SAR image. The experimental results show the excellent performance of our method on a large-scale SAR ship detection dataset-v1.0 (LS-SSDD-v1.0). It also achieved state-of-the-art performance on a high-resolution SAR image dataset (HRSID), which confirmed its applicability.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On Semiparametric Clutter Estimation for Ship Detection in Synthetic Aperture Radar Images
    Cui, Yi
    Yang, Jian
    Yamaguchi, Yoshio
    Singh, Gulab
    Park, Sang-Eun
    Kobayashi, Hirokazu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 3170 - 3180
  • [2] Ship Detection Based on Compound Distribution with Synthetic Aperture Radar Images
    Wu, Fan
    Gao, Congshan
    Wang, Chao
    Zhang, Hong
    Zhang, Bo
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 841 - 844
  • [3] Ship detection from scratch in Synthetic Aperture Radar (SAR) images
    Zhao, Kai
    Zhou, Yan
    Chen, Xin
    Wang, Bing
    Zhang, Yong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (13) : 5014 - 5028
  • [4] Multitask Learning for Ship Detection From Synthetic Aperture Radar Images
    Zhang, Xin
    Huo, Chunlei
    Xu, Nuo
    Jiang, Hangzhi
    Cao, Yong
    Ni, Lei
    Pan, Chunhong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8048 - 8062
  • [5] Ship detection in synthetic aperture radar (SAR) images by deep learning
    Ayhan, Oner
    Sen, Nigar
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS, 2019, 11169
  • [6] Hyperparameter Configuration Learning for Ship Detection From Synthetic Aperture Radar Images
    Xu, Nuo
    Huo, Chunlei
    Zhang, Xin
    Cao, Yong
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Balanced Feature Pyramid Network for Ship Detection in Synthetic Aperture Radar Images
    Zhang, Tianwen
    Zhang, Xinoling
    Shi, Jun
    Wei, Shunjun
    Wang, Jianguo
    Li, Jianwei
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [8] Multiscale saliency detection method for ship targets in synthetic aperture radar images
    Yan, Cheng Z.
    Liu, Chang
    Pang, Ying
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7585 - 7588
  • [9] Phase spectrum based automatic ship detection in synthetic aperture radar images
    Zhang, Miaohui
    Qiao, Baojun
    Xin, Ming
    Zhang, Bo
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2021, 6 (02) : 185 - 195
  • [10] Integrated Anti-Aliasing and Fully Shared Convolution for Small-Ship Detection in Synthetic Aperture Radar (SAR) Images
    He, Manman
    Liu, Junya
    Yang, Zhen
    Yin, Zhijian
    ELECTRONICS, 2024, 13 (22)