Neural Fisher Discriminant Analysis: Optimal Neural Network Embeddings in Polynomial Time

被引:0
|
作者
Bartan, Burak [1 ]
Pilanci, Mert [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fisher's Linear Discriminant Analysis (FLDA) is a statistical analysis method that linearly embeds data points to a lower dimensional space to maximize a discrimination criterion such that the variance between classes is maximized while the variance within classes is minimized. We introduce a natural extension of FLDA that employs neural networks, called Neural Fisher Discriminant Analysis (NFDA). This method finds the optimal two-layer neural network that embeds data points to optimize the same discrimination criterion. We use tools from convex optimization to transform the optimal neural network embedding problem into a convex problem. The resulting problem is easy to interpret and solve to global optimality. We evaluate the method's performance on synthetic and real datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Classification algorithms based on fisher discriminant and perceptron neural network
    Yang, H
    Xu, JW
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 2, PROCEEDINGS, 2005, 3497 : 20 - 25
  • [2] Face Recognition Using Kernel Fisher Linear Discriminant Analysis and RBF Neural Network
    Thakur, S.
    Sing, J. K.
    Basu, D. K.
    Nasipuri, M.
    [J]. CONTEMPORARY COMPUTING, PT 1, 2010, 94 : 13 - +
  • [3] Based on Cellular Neural Network with fisher discriminant method of hail forecast
    Li Bingjie
    Xu Wenxia
    Li Guodong
    Wangxu
    [J]. 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA AND SMART CITY (ICITBS), 2016, : 140 - 143
  • [4] Polynomial Vector Discriminant Back Propagation Algorithm Neural Network for Steganalysis
    Baragada, Sambasiva Rao
    Ramakrishna, S.
    Rao, M. S.
    Purushothaman, S.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (05): : 73 - 81
  • [5] Discriminant analysis by a neural network with mahalanobis distance
    Ito, Yoshifusa
    Srinivasan, Cidambi
    Izumi, Hiroyuki
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 350 - 360
  • [6] The polynomial neural network
    Das, S
    [J]. INFORMATION SCIENCES, 1995, 87 (04) : 231 - 246
  • [7] Gone Fishing: Neural Active Learning with Fisher Embeddings
    Ash, Jordan T.
    Goel, Surbhi
    Krishnamurthy, Akshay
    Kakade, Sham
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [8] Estimation of Petroleum Reservoir Parameters Using an Integrated Approach Neural Network, Principal Component Analysis and Fisher Discriminant Analysis
    Alaei, H. Komari
    Alaei, H. Komari
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2013, 31 (05) : 530 - 539
  • [9] Polynomial Time Cryptanalytic Extraction of Neural Network Models
    Canales-Martinez, Isaac A.
    Chavez-Saab, Jorge
    Hambitzer, Anna
    Rodriguez-Henriquez, Francisco
    Satpute, Nitin
    Shamir, Adi
    [J]. ADVANCES IN CRYPTOLOGY, PT III, EUROCRYPT 2024, 2024, 14653 : 3 - 33
  • [10] Neural discriminant analysis
    Tsujitani, M
    Koshimizu, T
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (06): : 1394 - 1401