The potential for imaging in situ damage in inflatable space structures

被引:0
|
作者
Madaras, Eric I. [1 ]
Anastasi, Robert F. [2 ]
Seebo, Jeffrey P. [3 ]
Studor, George [4 ]
McMakin, Douglas L. [5 ]
Nellums, Robert [6 ]
Winfiree, William P. [1 ]
机构
[1] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, MS 231, Hampton, VA 23681 USA
[2] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, US Army Res Lab,Vehicle Technol, Hampton, VA 23681 USA
[3] NASA, Langley Res Ctr, Lockheed Martin, Hampton, VA 23681 USA
[4] NASA, Johnson Space Ctr, Struct Branch, Houston, TX USA
[5] Pacif Northwest Natl Lab, Appl Phys, Richland, WA 99354 USA
[6] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
terahertz imaging; millimeter wave imaging; microwave imaging; space NDE; inflatable space structures;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
NASA is investigating the use of inflatable habitat structures for orbital transfer and planetary applications. Since space structures are vulnerable to damage from micrometeoroid and orbital debris, it is important to investigate means of detecting such damage. This study is an investigation into methods for performing non-destructive evaluation (NDE) on inflatable habitat modules. Results of this work showed that various electromagnetic imaging modalities from microwaves to terahertz imaging have the greatest potential for a viable, portable, NDE tool which could possibly be deployed aboard an inflatable habitat module.
引用
收藏
页码:437 / +
页数:2
相关论文
共 50 条
  • [21] NANOCOMPOSITE FABRIC SENSORS FOR MONITORING INFLATABLE AND DEPLOYABLE SPACE STRUCTURES
    Wang, Long
    Gupta, Sumit
    Loh, Kenneth J.
    Koo, Helen S.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2016, VOL 1, 2016,
  • [22] Using Inflatable Structures to Remove Space Debris from Orbit
    Koryanov, Vsevolod V.
    Kazakovtsev, Victor P.
    Toporkov, Alexey G.
    Nedogarok, Anton A.
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING (ICMAE 2019), 2019, : 32 - 36
  • [23] Electroactive-polymer actuators for controlling space inflatable structures
    Tung, S
    Witherspoon, S
    JOURNAL OF SPACECRAFT AND ROCKETS, 2005, 42 (04) : 607 - 612
  • [24] Integration of smart materials into dynamics and control of inflatable space structures
    Park, G
    Kim, MH
    Inman, DJ
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2001, 12 (06) : 423 - 433
  • [25] Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
    Schenk, Mark
    Viquerat, Andrew D.
    Seffen, Keith A.
    Guest, Simon D.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2014, 51 (03) : 762 - 778
  • [26] Shape estimation of inflatable space structures using neural network
    Peng, FJ
    Hu, YR
    Ng, A
    2005 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1 AND 2, 2005, : 1017 - 1022
  • [27] Structural dynamics experimental activities in ultralightweight and inflatable space structures
    Pappa, RS
    Lassiter, JO
    Ross, BP
    JOURNAL OF SPACECRAFT AND ROCKETS, 2003, 40 (01) : 15 - 23
  • [28] Experimental research on tape spring supported space inflatable structures
    Cook, Andrew J.
    Walker, Scott J. I.
    ACTA ASTRONAUTICA, 2016, 118 : 316 - 328
  • [29] Structural Certification of Human-Rated Inflatable Space Structures
    Jones, Thomas C.
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [30] INFLATABLE STRUCTURES
    BULSON, PS
    SCIENCE JOURNAL, 1970, 6 (07): : 69 - &