Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature

被引:66
|
作者
Li, Bowen [1 ,2 ]
Zu, Shuai [1 ,2 ]
Zhang, Zhepeng [3 ]
Zheng, Liheng [1 ,2 ]
Jiang, Qiao [1 ,2 ]
Du, Bowen [1 ,2 ]
Luo, Yang [1 ,2 ]
Gong, Yongji [4 ]
Zhang, Yanfeng [4 ]
Lin, Feng [1 ,2 ]
Shen, Bo [1 ,2 ]
Zhu, Xing [1 ,2 ]
Ajayan, Pulickel M. [4 ]
Fang, Zheyu [1 ,2 ,5 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[2] Peking Univ, Nanooptoelect Frontier Ctr, Minist Educ, Beijing 100871, Peoples R China
[3] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
[4] Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA
[5] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Rabi splitting; strong coupling; transition metal dichalcogenides; optical microcavity; surface plasmons; PLASMON; NANOSTRUCTURES; NANOPARTICLE; RESONANCE; EXCITONS; NANOROD;
D O I
10.29026/oea.2019.190008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (similar to 300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 19 条
  • [1] Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature
    Bowen Li
    Shuai Zu
    Zhepeng Zhang
    Liheng Zheng
    Qiao Jiang
    Bowen Du
    Yang Luo
    Yongji Gong
    Yanfeng Zhang
    Feng Lin
    Bo Shen
    Xing Zhu
    Pulickel M. Ajayan
    Zheyu Fang
    Opto-Electronic Advances, 2019, 2 (05) : 4 - 12
  • [2] Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime
    Christmann, Gabriel
    Butte, Raphael
    Feltin, Eric
    Mouti, Anas
    Stadelmann, Pierre A.
    Castiglia, Antonino
    Carlin, Jean-Francois
    Grandjean, Nicolas
    PHYSICAL REVIEW B, 2008, 77 (08):
  • [3] Large Rabi splitting in InGaN quantum wells microcavity at room temperature
    Wu, JinZhao
    Shi, XiaoLing
    Long, Hao
    Chen, Lan
    Ying, LeiYing
    Zheng, ZhiWei
    Zhang, BaoPing
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07):
  • [4] Rabi splitting obtained in a monolayer BP-plasmonic heterostructure at room temperature
    Huang, Yan
    Liu, Yan
    Shao, Yao
    Han, Genquan
    Zhang, Jincheng
    Hao, Yue
    OPTICAL MATERIALS EXPRESS, 2020, 10 (09): : 2159 - 2170
  • [5] Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature
    Han, Xiaobo
    Wang, Kai
    Xing, Xiangyuan
    Wang, Mengya
    Lu, Peixiang
    ACS PHOTONICS, 2018, 5 (10): : 3970 - 3976
  • [6] Large room temperature Rabi-splitting in II-VI semiconductor microcavity quantum structures
    Pawlis, A
    Khartchenko, A
    Husberg, O
    As, DJ
    Lischka, K
    Schikora, D
    MICROELECTRONICS JOURNAL, 2003, 34 (5-8) : 439 - 442
  • [7] Large room temperature Rabi-splitting in a ZnSe/(Zn,Cd)Se semiconductor microcavity structure
    Pawlis, A
    Khartchenko, A
    Husberg, O
    As, DJ
    Lischka, K
    Schikora, D
    SOLID STATE COMMUNICATIONS, 2002, 123 (05) : 235 - 238
  • [8] Room Temperature Strong Coupling of Monolayer WS2 with Gold Nanoantennae
    Liu, Lin
    Tobing, Landobasa Y. M.
    Tong, Jinchao
    Zhang, Dao Hua
    Garcia-Vidal, Francisco J.
    Luo, Yu
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 2578 - 2580
  • [9] Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature
    Marie-Elena Kleemann
    Rohit Chikkaraddy
    Evgeny M. Alexeev
    Dean Kos
    Cloudy Carnegie
    Will Deacon
    Alex Casalis de Pury
    Christoph Große
    Bart de Nijs
    Jan Mertens
    Alexander I. Tartakovskii
    Jeremy J. Baumberg
    Nature Communications, 8
  • [10] Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature
    Kleemann, Marie-Elena
    Chikkaraddy, Rohit
    Alexeev, Evgeny M.
    Kos, Dean
    Carnegie, Cloudy
    Deacon, Will
    de Pury, Alex Casalis
    Grosse, Christoph
    de Nijs, Bart
    Mertens, Jan
    Tartakovskii, Alexander I.
    Baumberg, Jeremy J.
    NATURE COMMUNICATIONS, 2017, 8