Similarity-Based Segmentation of Multi-Dimensional Signals

被引:10
|
作者
Machne, Rainer [1 ,7 ]
Murray, Douglas B. [2 ]
Stadler, Peter F. [3 ,4 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Cluster Excellence Plant Sci CEPLAS, Inst Synthet Microbiol, Univ Str 1, D-40225 Dusseldorf, Germany
[2] Keio Univ, Inst Adv Biosci, Tsuruoka, Yamagata 9970017, Japan
[3] Univ Leipzig, Competence Ctr Scalable Data Serv & Solut, German Ctr Integrat Biodivers Res iDiv Halle Jena, Bioinformat Grp,Dept Comp Sci,Interdisciplinary C, Hartelstr 16-18, D-04107 Leipzig, Germany
[4] Univ Leipzig, Leipzig Res Ctr Civilizat Dis, Hartelstr 16-18, D-04107 Leipzig, Germany
[5] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[6] Fraunhofer Inst Cell Therapy & Immunol, Perlickstr 1, D-04103 Leipzig, Germany
[7] Univ Vienna, Dept Theoret Chem, Wahringerstr 17, A-1090 Vienna, Austria
[8] Univ Copenhagen, Ctr RNA Technol & Hlth, Gronneg Ardsvej 3, Frederiksberg C, Denmark
[9] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
日本科学技术振兴机构;
关键词
CHROMATIN STATES; TRANSCRIPTION; RNA; DISCOVERY; DNA; ANNOTATION;
D O I
10.1038/s41598-017-12401-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The segmentation of time series and genomic data is a common problem in computational biology. With increasingly complex measurement procedures individual data points are often not just numbers or simple vectors in which all components are of the same kind. Analysis methods that capitalize on slopes in a single real-valued data track or that make explicit use of the vectorial nature of the data are not applicable in such scenaria. We develop here a framework for segmentation in arbitrary data domains that only requires a minimal notion of similarity. Using unsupervised clustering of (a sample of) the input yields an approximate segmentation algorithm that is efficient enough for genome-wide applications. As a showcase application we segment a time-series of transcriptome sequencing data from budding yeast, in high temporal resolution over ca. 2.5 cycles of the short-period respiratory oscillation. The algorithm is used with a similarity measure focussing on periodic expression profiles across the metabolic cycle rather than coverage per time point.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Similarity-Based Segmentation of Multi-Dimensional Signals
    Rainer Machné
    Douglas B. Murray
    Peter F. Stadler
    [J]. Scientific Reports, 7
  • [2] A Novel Similarity-Based Approach for Image Segmentation
    Deng, Juan
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND SIGNAL PROCESSING, 2009, : 36 - 39
  • [3] Multi-dimensional histogram-based image segmentation
    Weiler, Daniel
    Eggert, Julian
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 963 - +
  • [4] Similarity-based and perception-based image segmentation
    Huart, J
    Bertolino, P
    [J]. 2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 3653 - 3656
  • [5] A Novel Multi-Dimensional Composition Method Based on Time Series Similarity for Array Pulse Wave Signals Detecting
    Zou, Hongjie
    Zhang, Yitao
    Zhang, Jun
    Chen, Chuanglu
    Geng, Xingguang
    Zhang, Shaolong
    Zhang, Haiying
    [J]. ALGORITHMS, 2020, 13 (11) : 1 - 14
  • [6] An ascending auction with multi-dimensional signals
    Heumann, Tibor
    [J]. JOURNAL OF ECONOMIC THEORY, 2019, 184
  • [7] On control signals for multi-dimensional time
    Kim, DaeGon
    Gautam
    Rajopadhye, S.
    [J]. LANGUAGES AND COMPILERS FOR PARALLEL COMPUTING, 2007, 4382 : 141 - +
  • [8] Parity symmetry in multi-dimensional signals
    Sommer, Gerald
    Zang, Di
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (03) : 829 - 852
  • [9] Similarity-Based Fuzzy Classification of ECG and Capnogram Signals
    Pomares Betancourt, Janet
    Fatichah, Chastine
    Leonard Tangel, Martin
    Yan, Fei
    Sanchez, Jesus Adrian Garcia
    Dong, Fang-Yan
    Hirota, Kaoru
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2013, 17 (02) : 302 - 310
  • [10] Fast similarity join for multi-dimensional data
    Kalashnikov, Dmitri V.
    Prabhakar, Sunil
    [J]. INFORMATION SYSTEMS, 2007, 32 (01) : 160 - 177