Fusion of Radar- and Lidar-Data for Object-Tracking-Applications at Feature Level

被引:0
|
作者
Lindinger, Maximilian [1 ]
Strand, Marcus [2 ]
Schwarzkopf, Sebastian [3 ]
Honal, Matthias [3 ]
Engesser, Raphael [3 ]
机构
[1] Duale Hsch Baden Wurttemberg Karlsruhe, Erzbergerstr 121, D-76133 Karlsruhe, Germany
[2] Duale Hsch Baden Wurttemberg, Erzbergerstr 121, D-76133 Karlsruhe, Germany
[3] SICK AG, Erwin Sick Str 1, D-79183 Waldkirch, Germany
关键词
Sensor data fusion; Object tracking; Multi-sensor-systems;
D O I
10.1007/978-3-030-95892-3_51
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The topic of automation can be found in almost every area these days. In Industry 4.0 in particular, the exclusion of hazards to people, for example in a human-robot collaboration, is a central issue. Object tracking is an option for workspace monitoring in this context. To improve object tracking, a fusion is to be designed and implemented in this work in order to combine the various measurement properties of a Radar- and a Lidar-sensor. In this paper, the Kalman filter and the fusion in general are briefly introduced. Object tracking, the concept of the implemented fusion and the arrangement and synchronization of the sensors are then described in more detail. A final evaluation leads to the conclusion that especially the availability and the reliability in object tracking can be improved. Furthermore, it can be shown that feature-level fusion has a significant advantage over symbol-level fusion.
引用
收藏
页码:683 / 695
页数:13
相关论文
共 50 条
  • [1] Object Tracking Based on the Fusion of Roadside LiDAR and Camera Data
    Wang, Shujian
    Pi, Rendong
    Li, Jian
    Guo, Xinming
    Lu, Youfu
    Li, Tao
    Tian, Yuan
    [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71
  • [2] Object Tracking Based on the Fusion of Roadside LiDAR and Camera Data
    Wang, Shujian
    Pi, Rendong
    Li, Jian
    Guo, Xinming
    Lu, Youfu
    Li, Tao
    Tian, Yuan
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 1 - 1
  • [3] Multi-Object Tracking with Object Candidate Fusion for Camera and LiDAR Data
    Yin, Huilin
    Lu, Yu
    Lin, Jia
    Schratter, Markus
    Watzenig, Daniel
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2965 - 2970
  • [4] LIDAR-DATA: AUTOMATIC OBJECT DETECTION TO SUPPORT URBAN FLOODING SIMULATION
    Aktaruzzaman, Md.
    Schmitt, Theo G.
    [J]. 2010 CANADIAN GEOMATICS CONFERENCE AND SYMPOSIUM OF COMMISSION I, ISPRS CONVERGENCE IN GEOMATICS - SHAPING CANADA'S COMPETITIVE LANDSCAPE, 2010, 38
  • [5] Towards LiDAR and RADAR Fusion for Object Detection and Multi-object Tracking in CARLA Simulator
    Montiel-Marin, Santiago
    Gomez-Huelamo, Carlos
    de la Pena, Javier
    Antunes, Miguel
    Lopez-Guillen, Elena
    Bergasa, Luis M.
    [J]. ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2, 2023, 590 : 552 - 563
  • [6] An object-based system for LiDAR data fusion and feature extraction
    O'Neil-Dunne, Jarlath P. M.
    MacFaden, Sean W.
    Royar, Anna R.
    Pelletier, Keith C.
    [J]. GEOCARTO INTERNATIONAL, 2013, 28 (03) : 227 - 242
  • [7] RVDet:Feature-level Fusion of Radar and Camera for Object Detection
    Zhang, Jingwei
    Zhang, Ming
    Fang, Zicheng
    Wang, Yulong
    Zhao, Xian
    Pu, Shiliang
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2822 - 2828
  • [8] Triplet Network with Multi-level Feature Fusion for Object Tracking
    Cao, Yang
    Wan, Bo
    Wang, Quan
    Cheng, Fei
    [J]. 2020 JOINT 9TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2020 4TH INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2020,
  • [9] FEATURE FUSION FOR ROBUST OBJECT TRACKING
    Islam, M. A.
    Rasheduzzaman, M.
    Elahi, M. M. Lutfe
    Poon, Bruce
    Amin, M. Ashraful
    Yan, Hong
    [J]. PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 138 - 145
  • [10] Multiple Feature Fusion for Object Tracking
    Zhou, Yu
    Rao, Cong
    Lu, Qin
    Bai, Xiang
    Liu, Wenyu
    [J]. INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 145 - 152