A probe method for the inverse boundary value problem of non-stationary heat equations

被引:21
|
作者
Daido, Yuki [1 ]
Kang, Hyeonbae
Nakamura, Gen
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Seoul Natl Univ, Dept Math Sci, RIM, Seoul 151747, South Korea
关键词
D O I
10.1088/0266-5611/23/5/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inverse problem for identifying an inclusion inside an isotropic homogeneous heat conductive medium is considered. The shape of the inclusion may vary depending on time. For the one space dimensional case, we develop an analogue of the probe method known for inverse boundary value problems for elliptic equations and give a reconstruction procedure for identifying the inclusion from the Neumann to Dirichlet map.
引用
收藏
页码:1787 / 1800
页数:14
相关论文
共 50 条
  • [1] FIRST BOUNDARY VALUE PROBLEM FOR NAVIER - STOKES NON-STATIONARY EQUATIONS
    GOLOVKIN, KK
    SOLONNIKOV, VA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 140 (02): : 287 - &
  • [2] INVERSE PROBLEM OF NON-STATIONARY DISPERSION
    NIZHNIK, LP
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 196 (05): : 1016 - &
  • [3] An inverse problem for Maxwell's equations in isotropic and non-stationary media
    Li, Shumin
    Yamamoto, Masahiro
    [J]. APPLICABLE ANALYSIS, 2013, 92 (11) : 2335 - 2356
  • [4] Inverse problem for non-stationary system of magnetohydrodynamics
    Abylkairov, Undasin U.
    Aitzhanov, Serik E.
    [J]. BOUNDARY VALUE PROBLEMS, 2015,
  • [5] Inverse problem for non-stationary system of magnetohydrodynamics
    Undasin U Abylkairov
    Serik E Aitzhanov
    [J]. Boundary Value Problems, 2015
  • [6] Numerical implementations of dynamical probe method for non-stationary heat equation
    Daido, Y.
    Lei, Y.
    Liu, J.
    Nakamura, G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (02) : 510 - 521
  • [7] Solution of Inverse Problem of Non-Stationary Heat Conduction Using a Laplace Transform
    Frackowiak, Andrzej
    Wroblewska, Agnieszka
    Cialkowski, Michal
    [J]. HEAT TRANSFER ENGINEERING, 2023, 44 (11-12) : 1061 - 1071
  • [8] A projection method for the non-stationary incompressible MHD coupled with the heat equations
    Si, Zhiyong
    Wang, Mingyi
    Wang, Yunxia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 428
  • [9] Adjoint method for inverse boundary value problem of heat conduction
    Onishi, K
    Ohura, Y
    [J]. COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 1095 - 1100
  • [10] Hyperbolic inverse boundary-value problem and time-continuation of the non-stationary Dirichlet-to-Neumann map
    Kurylev, Y
    Lassas, M
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 931 - 949